cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010883 Simple periodic sequence: repeat 1,2,3,4.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130482(n) + n + 1. - Hieronymus Fischer, Jun 08 2007
1234/9999 = 0.123412341234... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177037 (decimal expansion of (9+2*sqrt(39))/15). - Klaus Brockhaus, May 01 2010

Programs

Formula

a(n) = 1 + (n mod 4). - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = A010873(n) + 1.
Also a(n) = (1/2)*(5 - (-1)^n - 2*(-1)^((2*n - 1 + (-1)^n)/4)).
G.f.: g(x) = (4*x^3 + 3*x^2 + 2*x + 1)/(1 - x^4) = (4*x^5 - 5*x^4 + 1)/((1 - x^4)*(1-x)^2). (End)
a(n) = 5/2 - cos(Pi*n/2) - sin(Pi*n/2) - (-1)^n/2. - R. J. Mathar, Oct 08 2011