A010905 Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15.
4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0
Keywords
References
- Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Programs
-
Magma
/* By definition: */ [n le 2 select 11*n-7 else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..22]]; // Bruno Berselli, Apr 16 2012
-
Mathematica
a[0] = 4; a[1] = 15; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 24}] (* Michael De Vlieger, Jul 27 2016 *)
-
PARI
pisotE(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2)); a } pisotE(50, 4, 15) \\ Colin Barker, Jul 27 2016
-
Sage
@cached_function def A010905(n): if n==0: return 4 elif n==1: return 15 else: return 4*A010905(n-1) - A010905(n-2) [A010905(n) for n in range(30)] # G. C. Greubel, Dec 13 2018
Formula
a(n) = 4*a(n-1) - a(n-2) for n>=2. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
This was conjectured by Colin Barker, Apr 16 2012, and implies the G.f.: (4-x)/(1-4*x+x^2) and the formula a(n) = ((1+sqrt(3))^(2*n+4)-(1-sqrt(3))^(2*n+4))/(2^(n+3)*sqrt(3)).
Partial sums of A079935. - Erin Pearse, Dec 13 2018
Extensions
Edited by N. J. A. Sloane, Jul 26 2016 and Sep 09 2016