A010903 Pisot sequence E(3,13): a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072, 61589856118237, 265007332436969, 1140267093830134
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See pp. 11-13, 24.
- Index entries for linear recurrences with constant coefficients, signature (5,-3).
Crossrefs
Cf. A010920.
Programs
-
Mathematica
LinearRecurrence[{5, -3}, {3, 13}, 24] (* Jean-François Alcover, Oct 22 2019 *) nxt[{a_,b_}]:={b,Floor[b^2/a+1/2]}; NestList[nxt,{3,13},30][[;;,1]] (* Harvey P. Dale, Mar 29 2025 *)
-
PARI
Vec((3-2*x)/(1-5*x+3*x^2) + O(x^30)) \\ Colin Barker, Jul 27 2016
Formula
O.g.f.: (3-2*x)/(1-5*x+3*x^2). - R. J. Mathar, May 26 2008
a(n) = (2^(-1-n)*((5-sqrt(13))^n*(-11+3*sqrt(13)) + (5+sqrt(13))^n*(11+3*sqrt(13))))/sqrt(13). - Colin Barker, Nov 26 2016
Comments