cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011251 Numbers n such that phi(n) + sigma(n) = 3n.

Original entry on oeis.org

312, 560, 588, 1400, 85632, 147492, 556160, 569328, 1590816, 2013216, 3343776, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 52021242, 75007400, 137617728, 153587720, 699117024, 904683264, 2468053248, 2834395104, 21669802880, 48444151296
Offset: 1

Views

Author

Keywords

Comments

n is necessarily composite.
From the Math. Rev.: if both q=7*2^{r-2}+2^s-1 and p=49*2^{2r-s-4}+7*2^{r-2}-5*2^{r-s-2}-1 are prime for 1 <= s < r-2, then n=2^r*3*p*q is a solution to the equation phi(n)+sigma(n)=3n . [R. K. Guy]
If 7*2^n-1 is prime then m = 2^(n+2)*3*(7*2^n-1) is in the sequence. Because phi(m) = 2^(n+2)*(7*2^n-2); sigma(m) = 7*2^(n+2)*(2^(n+3)-1) so phi(m)+sigma(m) = 2^(n+2)*((7*2^n-2)+(7*2^(n+3)-7)) = 2^(n+2)*(63*2^n-9) = 3*(2^(n+2)*3*(7*2^n-1)) = 3*m. Hence A112729 = 2^(A001771+2)*3*(7*2^A001771-1) is a subsequence of this sequence. - Farideh Firoozbakht, Dec 01 2005
If both numbers p=7*2^n+2^k-1 & q=49*2^(2n-k)+2^(n-k)*(7*2^k-5)-1 are prime and m=2^(n+2)*3*p*q then phi(m)+sigma(m)=3*m. Namely m is in the sequence. - Farideh Firoozbakht, Jan 11 2007

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), 75.
  • Ming Zhi ZHANG, A note on the equation phi(n)+sigma(n)=3n, Sichuan Daxue Xuebao 37 (2000), no. 1, 39-40; MR1755990 (2001a:11009).

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ EulerPhi[n] + DivisorSigma[1, n] == 3 n, Print[n]; Sow[n]], {n, 0, 10^8, 2}]][[2, 1]] (* Jean-François Alcover, Feb 16 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==3*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
a(26)-a(27) from Donovan Johnson, Feb 28 2012