cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001771 Numbers k such that 7*2^k - 1 is prime.

Original entry on oeis.org

1, 5, 9, 17, 21, 29, 45, 177, 18381, 22529, 24557, 26109, 34857, 41957, 67421, 70209, 169085, 173489, 177977, 363929, 372897
Offset: 1

Views

Author

Keywords

Comments

k is always of the form 4*j + 1.
If k is in the sequence and m=2^(k+2)*3*(7*2^k-1) then phi(m)+sigma(m)=3m (m is in the sequence A011251). The proof is easy. - Farideh Firoozbakht, Mar 04 2005

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[7*2^n - 1], Print[n]], {n, 1, 2500}]
  • PARI
    v=[ ]; for(n=0,2000, if(isprime(7*2^n-1),v=concat(v,n),)); v

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu).
More terms from Hugo Pfoertner, Jun 23 2004

A011774 Nonprimes k that divide sigma(k) + phi(k).

Original entry on oeis.org

1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
Offset: 1

Views

Author

Keywords

Comments

2*k = sigma(k) + phi(k) if and only if k is 1 or a prime.
If 7*2^j - 1 is prime then m = 2^(j+2)*3*(7*2^j - 1) is in the sequence. Because phi(m) = 2^(j+2)*(7*2^j - 2); sigma(m) = 7*2^(j+2)*(2^(j+3) - 1) so phi(m) + sigma(m) = 2^(j+2)*((7*2^j - 2) + (7*2^(j+3) - 7)) = 2^(j+2)* (63*2^(j+2) - 9) = 3*(2^(j+2)*3*(7*2^j - 1)) = 3*m, hence m is a term of A011251 and consequently m is a term of this sequence. A112729 gives such m's. - Farideh Firoozbakht, Dec 01 2005
Conjecture: For n > 1, a(n) is a Zumkeller number (A083207). Verified for all n in [2,63]. - Ivan N. Ianakiev, Jan 25 2023

Examples

			a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}]
    Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
  • PARI
    sp(n)=my(f=factor(n));n*prod(i=1, #f[,1], 1-1/f[i,1]) + prod(i=1, #f[,1], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))
    p=2;forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 19 2012

Extensions

More terms from David W. Wilson
Corrected by Labos Elemer, Feb 12 2004

A011254 Numbers k such that phi(k) + sigma(k) = 4*k.

Original entry on oeis.org

23760, 59400, 153720, 4563000, 45326160, 113315400, 402831360, 731601000, 803685120, 865950624, 919501200, 1178491680, 3504597120, 3786686400, 6429564000, 14924714400, 25310621952, 26998616736, 53138687040, 86955675840, 513969369984, 1054373308800, 1868445408960
Offset: 1

Views

Author

Keywords

Comments

If (sigma(m)-phi(m))/(4*m-sigma(m)-phi(m)) is a prime integer p not dividing m, then p*m is in the sequence. 135230346701100 is in the sequence and not divisible by 24. - Jens Kruse Andersen, Feb 17 2009
If k=80*m is in the sequence and gcd(m,10) = 1 then 200*m is also in the sequence. Proof: phi(200*m) + sigma(200*m) = phi(200)*phi(m) + sigma(200)*sigma(m) = 80*phi(m) + 465*sigma(k) = (5/2)*(32*phi(m) + 186*sigma(m)) = (5/2)*(phi(80)*phi(m) + sigma(80)*sigma(m)) = (5/2)*(phi(80*m) + sigma(80*m)) = (5/2)*(phi(k) + sigma(k)) = (5/2)*(4*k) = 5/2*(4*80*m) = 4*(200*m) so 200*m is in the sequence. - Farideh Firoozbakht, Mar 30 2009

Examples

			phi(23760) + sigma(23760) = 5760 + 89280 = 4*23760, so 23760 is in the sequence.
		

References

  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), p. 75.
  • Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, Oct 01 1996.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], DivisorSigma[1, #] + EulerPhi[#] == 4 # &] (* David Nacin, Feb 28 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==4*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
1178491680 from Farideh Firoozbakht, Jan 31 2006
2 more terms from Jud McCranie, Jan 31 2006
24 divides all known terms of the sequence. If this is true for the next five terms then they are 6429564000, 14924714400, 25310621952, 26998616736 and 53138687040. - Farideh Firoozbakht, Mar 11 2006
More terms from Jens Kruse Andersen, Feb 17 2009
a(21) from Donovan Johnson, Feb 28 2012
a(22)-a(23) from Donovan Johnson, Apr 04 2012

A015704 a(n) is the smallest number m such that phi(m) + sigma(m) = n*m.

Original entry on oeis.org

1, 312, 23760, 336280120525440
Offset: 2

Views

Author

Keywords

Comments

The offset is 2, because for all numbers m, phi(m)+sigma(m) >= 2*m, so there is no number a(1) such that phi(a(1))+sigma(a(1))=1*a(1). - Farideh Firoozbakht, Jan 22 2008
a(5) >= 2*10^9. - Farideh Firoozbakht, Jan 22 2008
10^13 < a(5) <= 336280120525440. Charles R Greathouse IV showed that 6 divides a(5). 336280120525440 and 60493590969525342720 are the only m values I found such that phi(m) + sigma(m) = 5*m. - Donovan Johnson, Sep 11 2012

Crossrefs

Programs

  • PARI
    a(n) = my(m = 1); while(sigma(m)+eulerphi(m) != n*m, m++); m; \\ Michel Marcus, Oct 04 2017

Extensions

Name, offset and data corrected by Farideh Firoozbakht, Jan 22 2008
a(5) confirmed by Martin Ehrenstein, Jan 15 2024

A112729 Numbers of the form 2^(k+2)*3*(7*2^k-1) where 7*2^k-1 is prime.

Original entry on oeis.org

312, 85632, 22013952, 1443107438592, 369435881766912, 24211351590301335552, 103986963299971520879061368832
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 01 2005

Keywords

Comments

This sequence is a subsequence of A011251 and A011774, namely if m is in the sequence then phi(m)+sigma(m)=3*m (see Comments line of A011251).
Number of digits of all the 20 known terms of this sequence are respectively 3, 5, 8, 13, 15, 20, 30, 109, 11069, 13566, 14787, 15722, 20988, 25263, 40594, 42272, 101802, 104453, 107155 and 219110.

Examples

			103986963299971520879061368832 is in the sequence because 103986963299971520879061368832=2^(45+2)*3*(7*2^45-1) and 7*2^45-1 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[7*2^n-1], Print[3*2^(n+2)*(7*2^n-1)]], {n, 177}]

A328951 Numbers m such that sigma(m) + tau(m) = 3m.

Original entry on oeis.org

60, 5472, 2500704, 24361213461200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 10 2019

Keywords

Comments

Abundant numbers m with abundance A(m) = m - tau(m) = A049820(m), where A049820(n) is the number of non-divisors of n.
Subsequence of A056076.
Corresponding values of A(m) = m - tau(m): 48, 5436, 2500632, ...
4 is the only number m with deficiency D(m) = m - tau(m).
808989640739424 is also a term. - Giovanni Resta, Nov 14 2019

Examples

			60 is a term because sigma(60) + tau(60) = 3*60; 168 + 12 = 180 = 3*60.
		

Crossrefs

Cf. A083874 (numbers m such that sigma(m) + tau(m) = 2m).
Cf. A011251 (numbers m such that sigma(m) + phi(m) = 3m).
Cf. A329104 (numbers m with abundance A(m) = tau(m)).

Programs

  • Magma
    [m: m in [1..10^7] | SumOfDivisors(m) - 2*m eq m - NumberOfDivisors(m)];
    
  • Mathematica
    Select[Range[3*10^6], DivisorSigma[0, #] + DivisorSigma[1, #] == 3# &] (* Amiram Eldar, Nov 10 2019 *)
  • PARI
    isok(m) = my(f=factor(m)); sigma(f) + numdiv(m) == 3*m; \\ Michel Marcus, Nov 13 2019

Extensions

a(4) from Martin Ehrenstein, Jul 25 2023
Showing 1-6 of 6 results.