A001771
Numbers k such that 7*2^k - 1 is prime.
Original entry on oeis.org
1, 5, 9, 17, 21, 29, 45, 177, 18381, 22529, 24557, 26109, 34857, 41957, 67421, 70209, 169085, 173489, 177977, 363929, 372897
Offset: 1
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Do[ If[ PrimeQ[7*2^n - 1], Print[n]], {n, 1, 2500}]
-
v=[ ]; for(n=0,2000, if(isprime(7*2^n-1),v=concat(v,n),)); v
More terms from Douglas Burke (dburke(AT)nevada.edu).
A011774
Nonprimes k that divide sigma(k) + phi(k).
Original entry on oeis.org
1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
Offset: 1
a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
- Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.
-
Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}]
Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
-
sp(n)=my(f=factor(n));n*prod(i=1, #f[,1], 1-1/f[i,1]) + prod(i=1, #f[,1], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))
p=2;forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 19 2012
A011254
Numbers k such that phi(k) + sigma(k) = 4*k.
Original entry on oeis.org
23760, 59400, 153720, 4563000, 45326160, 113315400, 402831360, 731601000, 803685120, 865950624, 919501200, 1178491680, 3504597120, 3786686400, 6429564000, 14924714400, 25310621952, 26998616736, 53138687040, 86955675840, 513969369984, 1054373308800, 1868445408960
Offset: 1
phi(23760) + sigma(23760) = 5760 + 89280 = 4*23760, so 23760 is in the sequence.
- David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), p. 75.
- Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, Oct 01 1996.
24 divides all known terms of the sequence. If this is true for the next five terms then they are 6429564000, 14924714400, 25310621952, 26998616736 and 53138687040. -
Farideh Firoozbakht, Mar 11 2006
A015704
a(n) is the smallest number m such that phi(m) + sigma(m) = n*m.
Original entry on oeis.org
1, 312, 23760, 336280120525440
Offset: 2
A112729
Numbers of the form 2^(k+2)*3*(7*2^k-1) where 7*2^k-1 is prime.
Original entry on oeis.org
312, 85632, 22013952, 1443107438592, 369435881766912, 24211351590301335552, 103986963299971520879061368832
Offset: 1
103986963299971520879061368832 is in the sequence because 103986963299971520879061368832=2^(45+2)*3*(7*2^45-1) and 7*2^45-1 is prime.
A328951
Numbers m such that sigma(m) + tau(m) = 3m.
Original entry on oeis.org
60, 5472, 2500704, 24361213461200
Offset: 1
60 is a term because sigma(60) + tau(60) = 3*60; 168 + 12 = 180 = 3*60.
Cf.
A083874 (numbers m such that sigma(m) + tau(m) = 2m).
Cf.
A011251 (numbers m such that sigma(m) + phi(m) = 3m).
Cf.
A329104 (numbers m with abundance A(m) = tau(m)).
-
[m: m in [1..10^7] | SumOfDivisors(m) - 2*m eq m - NumberOfDivisors(m)];
-
Select[Range[3*10^6], DivisorSigma[0, #] + DivisorSigma[1, #] == 3# &] (* Amiram Eldar, Nov 10 2019 *)
-
isok(m) = my(f=factor(m)); sigma(f) + numdiv(m) == 3*m; \\ Michel Marcus, Nov 13 2019
Showing 1-6 of 6 results.
Comments