cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118579 Erroneous version of A015704.

Original entry on oeis.org

1, 2, 312, 23760, 45326160
Offset: 1

Views

Author

Keywords

A011251 Numbers n such that phi(n) + sigma(n) = 3n.

Original entry on oeis.org

312, 560, 588, 1400, 85632, 147492, 556160, 569328, 1590816, 2013216, 3343776, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 52021242, 75007400, 137617728, 153587720, 699117024, 904683264, 2468053248, 2834395104, 21669802880, 48444151296
Offset: 1

Views

Author

Keywords

Comments

n is necessarily composite.
From the Math. Rev.: if both q=7*2^{r-2}+2^s-1 and p=49*2^{2r-s-4}+7*2^{r-2}-5*2^{r-s-2}-1 are prime for 1 <= s < r-2, then n=2^r*3*p*q is a solution to the equation phi(n)+sigma(n)=3n . [R. K. Guy]
If 7*2^n-1 is prime then m = 2^(n+2)*3*(7*2^n-1) is in the sequence. Because phi(m) = 2^(n+2)*(7*2^n-2); sigma(m) = 7*2^(n+2)*(2^(n+3)-1) so phi(m)+sigma(m) = 2^(n+2)*((7*2^n-2)+(7*2^(n+3)-7)) = 2^(n+2)*(63*2^n-9) = 3*(2^(n+2)*3*(7*2^n-1)) = 3*m. Hence A112729 = 2^(A001771+2)*3*(7*2^A001771-1) is a subsequence of this sequence. - Farideh Firoozbakht, Dec 01 2005
If both numbers p=7*2^n+2^k-1 & q=49*2^(2n-k)+2^(n-k)*(7*2^k-5)-1 are prime and m=2^(n+2)*3*p*q then phi(m)+sigma(m)=3*m. Namely m is in the sequence. - Farideh Firoozbakht, Jan 11 2007

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), 75.
  • Ming Zhi ZHANG, A note on the equation phi(n)+sigma(n)=3n, Sichuan Daxue Xuebao 37 (2000), no. 1, 39-40; MR1755990 (2001a:11009).

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ EulerPhi[n] + DivisorSigma[1, n] == 3 n, Print[n]; Sow[n]], {n, 0, 10^8, 2}]][[2, 1]] (* Jean-François Alcover, Feb 16 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==3*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
a(26)-a(27) from Donovan Johnson, Feb 28 2012

A011254 Numbers k such that phi(k) + sigma(k) = 4*k.

Original entry on oeis.org

23760, 59400, 153720, 4563000, 45326160, 113315400, 402831360, 731601000, 803685120, 865950624, 919501200, 1178491680, 3504597120, 3786686400, 6429564000, 14924714400, 25310621952, 26998616736, 53138687040, 86955675840, 513969369984, 1054373308800, 1868445408960
Offset: 1

Views

Author

Keywords

Comments

If (sigma(m)-phi(m))/(4*m-sigma(m)-phi(m)) is a prime integer p not dividing m, then p*m is in the sequence. 135230346701100 is in the sequence and not divisible by 24. - Jens Kruse Andersen, Feb 17 2009
If k=80*m is in the sequence and gcd(m,10) = 1 then 200*m is also in the sequence. Proof: phi(200*m) + sigma(200*m) = phi(200)*phi(m) + sigma(200)*sigma(m) = 80*phi(m) + 465*sigma(k) = (5/2)*(32*phi(m) + 186*sigma(m)) = (5/2)*(phi(80)*phi(m) + sigma(80)*sigma(m)) = (5/2)*(phi(80*m) + sigma(80*m)) = (5/2)*(phi(k) + sigma(k)) = (5/2)*(4*k) = 5/2*(4*80*m) = 4*(200*m) so 200*m is in the sequence. - Farideh Firoozbakht, Mar 30 2009

Examples

			phi(23760) + sigma(23760) = 5760 + 89280 = 4*23760, so 23760 is in the sequence.
		

References

  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), p. 75.
  • Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, Oct 01 1996.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], DivisorSigma[1, #] + EulerPhi[#] == 4 # &] (* David Nacin, Feb 28 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==4*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
1178491680 from Farideh Firoozbakht, Jan 31 2006
2 more terms from Jud McCranie, Jan 31 2006
24 divides all known terms of the sequence. If this is true for the next five terms then they are 6429564000, 14924714400, 25310621952, 26998616736 and 53138687040. - Farideh Firoozbakht, Mar 11 2006
More terms from Jens Kruse Andersen, Feb 17 2009
a(21) from Donovan Johnson, Feb 28 2012
a(22)-a(23) from Donovan Johnson, Apr 04 2012

A145747 a(n) is the smallest number m such that phi(m)+sigma(m)=n*pi(m).

Original entry on oeis.org

3, 2, 14, 26, 55, 30, 56, 329, 626, 366, 340, 558, 288, 552, 828, 3496, 6928, 2430, 81809, 3920, 3432, 8680, 48380, 23430, 2520, 144020, 435056, 21384, 728096, 188376, 11802175, 97320, 54057938, 89700, 349752, 1143492, 11286632, 490752
Offset: 3

Views

Author

Farideh Firoozbakht, Oct 30 2008

Keywords

Comments

a(47) is greater than 4*10^8.

Crossrefs

Cf. A015704.

Programs

  • Mathematica
    a[n_]:=(For[m=1,DivisorSigma[1,m]+EulerPhi[m]!=n EulerPhi[m],m++ ];m);Do[Print[a[n]],{n,3,46}]
Showing 1-4 of 4 results.