A011251 Numbers n such that phi(n) + sigma(n) = 3n.
312, 560, 588, 1400, 85632, 147492, 556160, 569328, 1590816, 2013216, 3343776, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 52021242, 75007400, 137617728, 153587720, 699117024, 904683264, 2468053248, 2834395104, 21669802880, 48444151296
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
- David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), 75.
- Ming Zhi ZHANG, A note on the equation phi(n)+sigma(n)=3n, Sichuan Daxue Xuebao 37 (2000), no. 1, 39-40; MR1755990 (2001a:11009).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..35 (terms < 5*10^12)
- F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
- Kelley Harris, On the classification of integers n that divide phi(n)+sigma(n), J. Num. Theory 129 (2009) 2093-2110.
Programs
-
Mathematica
Reap[ Do[ If[ EulerPhi[n] + DivisorSigma[1, n] == 3 n, Print[n]; Sow[n]], {n, 0, 10^8, 2}]][[2, 1]] (* Jean-François Alcover, Feb 16 2012 *)
-
PARI
is(n)=eulerphi(n)+sigma(n)==3*n \\ Charles R Greathouse IV, Nov 27 2013
Extensions
More terms from Jud McCranie
a(26)-a(27) from Donovan Johnson, Feb 28 2012
Comments