cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065387 a(n) = sigma(n) + phi(n).

Original entry on oeis.org

2, 4, 6, 9, 10, 14, 14, 19, 19, 22, 22, 32, 26, 30, 32, 39, 34, 45, 38, 50, 44, 46, 46, 68, 51, 54, 58, 68, 58, 80, 62, 79, 68, 70, 72, 103, 74, 78, 80, 106, 82, 108, 86, 104, 102, 94, 94, 140, 99, 113, 104, 122, 106, 138, 112, 144, 116, 118, 118, 184, 122, 126, 140
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

a(n) = 2n for n listed in A008578, the prime numbers at the beginning of the 20th century. When a(n) = a(n + 1), n is probably listed in A066198, numbers n where phi changes as fast as sigma (the only exceptions below 10000 are 2 and 854). - Alonso del Arte, Nov 16 2005
A. Makowski proved that n is prime if and only if a(n) = n * d(n), where d is A000005. - Charles R Greathouse IV, Mar 19 2012
If n is semiprime, a(n) = 2n+1+ceiling(sqrt(n))-floor(sqrt(n)). - Wesley Ivan Hurt, May 05 2015
Atanassov proves that a(n) >= n + A001414(n). - Charles R Greathouse IV, Dec 06 2016
a(n) = 2*n+1 iff n is square of prime (A001248), a(n) = 2*(n+1) iff n is squarefree semiprime (A006881). - Bernard Schott, Feb 09 2020

Examples

			a(10) = 22 because there are 4 coprimes to 10 below 10, the divisors of 10 add up to 18, and 4 + 18 = 22.
		

References

  • K. Atanassov, New integer functions, related to ψ and σ functions. IV., Bull. Number Theory Related Topics 12 (1988), pp. 31-35.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 162.

Crossrefs

See A292768 for partial sums, A051612 for sigma - phi.

Programs

Formula

a(n) = A000203(n) + A000010(n).
a(n) = A051709(n) + 2n. - N. J. A. Sloane, Jun 12 2004
G.f.: Sum_{k>=1} (mu(k) + 1)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 29 2017

A011251 Numbers n such that phi(n) + sigma(n) = 3n.

Original entry on oeis.org

312, 560, 588, 1400, 85632, 147492, 556160, 569328, 1590816, 2013216, 3343776, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 52021242, 75007400, 137617728, 153587720, 699117024, 904683264, 2468053248, 2834395104, 21669802880, 48444151296
Offset: 1

Views

Author

Keywords

Comments

n is necessarily composite.
From the Math. Rev.: if both q=7*2^{r-2}+2^s-1 and p=49*2^{2r-s-4}+7*2^{r-2}-5*2^{r-s-2}-1 are prime for 1 <= s < r-2, then n=2^r*3*p*q is a solution to the equation phi(n)+sigma(n)=3n . [R. K. Guy]
If 7*2^n-1 is prime then m = 2^(n+2)*3*(7*2^n-1) is in the sequence. Because phi(m) = 2^(n+2)*(7*2^n-2); sigma(m) = 7*2^(n+2)*(2^(n+3)-1) so phi(m)+sigma(m) = 2^(n+2)*((7*2^n-2)+(7*2^(n+3)-7)) = 2^(n+2)*(63*2^n-9) = 3*(2^(n+2)*3*(7*2^n-1)) = 3*m. Hence A112729 = 2^(A001771+2)*3*(7*2^A001771-1) is a subsequence of this sequence. - Farideh Firoozbakht, Dec 01 2005
If both numbers p=7*2^n+2^k-1 & q=49*2^(2n-k)+2^(n-k)*(7*2^k-5)-1 are prime and m=2^(n+2)*3*p*q then phi(m)+sigma(m)=3*m. Namely m is in the sequence. - Farideh Firoozbakht, Jan 11 2007

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), 75.
  • Ming Zhi ZHANG, A note on the equation phi(n)+sigma(n)=3n, Sichuan Daxue Xuebao 37 (2000), no. 1, 39-40; MR1755990 (2001a:11009).

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ EulerPhi[n] + DivisorSigma[1, n] == 3 n, Print[n]; Sow[n]], {n, 0, 10^8, 2}]][[2, 1]] (* Jean-François Alcover, Feb 16 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==3*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
a(26)-a(27) from Donovan Johnson, Feb 28 2012

A011254 Numbers k such that phi(k) + sigma(k) = 4*k.

Original entry on oeis.org

23760, 59400, 153720, 4563000, 45326160, 113315400, 402831360, 731601000, 803685120, 865950624, 919501200, 1178491680, 3504597120, 3786686400, 6429564000, 14924714400, 25310621952, 26998616736, 53138687040, 86955675840, 513969369984, 1054373308800, 1868445408960
Offset: 1

Views

Author

Keywords

Comments

If (sigma(m)-phi(m))/(4*m-sigma(m)-phi(m)) is a prime integer p not dividing m, then p*m is in the sequence. 135230346701100 is in the sequence and not divisible by 24. - Jens Kruse Andersen, Feb 17 2009
If k=80*m is in the sequence and gcd(m,10) = 1 then 200*m is also in the sequence. Proof: phi(200*m) + sigma(200*m) = phi(200)*phi(m) + sigma(200)*sigma(m) = 80*phi(m) + 465*sigma(k) = (5/2)*(32*phi(m) + 186*sigma(m)) = (5/2)*(phi(80)*phi(m) + sigma(80)*sigma(m)) = (5/2)*(phi(80*m) + sigma(80*m)) = (5/2)*(phi(k) + sigma(k)) = (5/2)*(4*k) = 5/2*(4*80*m) = 4*(200*m) so 200*m is in the sequence. - Farideh Firoozbakht, Mar 30 2009

Examples

			phi(23760) + sigma(23760) = 5760 + 89280 = 4*23760, so 23760 is in the sequence.
		

References

  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), p. 75.
  • Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, Oct 01 1996.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], DivisorSigma[1, #] + EulerPhi[#] == 4 # &] (* David Nacin, Feb 28 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==4*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
1178491680 from Farideh Firoozbakht, Jan 31 2006
2 more terms from Jud McCranie, Jan 31 2006
24 divides all known terms of the sequence. If this is true for the next five terms then they are 6429564000, 14924714400, 25310621952, 26998616736 and 53138687040. - Farideh Firoozbakht, Mar 11 2006
More terms from Jens Kruse Andersen, Feb 17 2009
a(21) from Donovan Johnson, Feb 28 2012
a(22)-a(23) from Donovan Johnson, Apr 04 2012

A055681 Numbers k that divide sigma(k)-phi(k).

Original entry on oeis.org

1, 2, 12, 42, 1242, 75960, 1447488, 3506976, 6137440, 10834488, 17156160, 90288000, 431440416, 454460160, 704592000, 1385119360, 1588268480, 10674673152, 24913095480, 31103703540, 56015374080, 80767843200, 129631788000, 463308768000, 469897798656, 834460413696
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

a(37) > 10^13. - Giovanni Resta, Jun 12 2013

Crossrefs

Programs

  • Maple
    with(numtheory): A055681:=n->`if`(sigma(n)-phi(n) mod n=0,n,NULL): seq(A055681(n), n=1..10^5); # Wesley Ivan Hurt, Sep 13 2014
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-EulerPhi[n], n]==0, Print[n]], {n, 1, 10^9}]
  • PARI
    for(n=1,10^8,if((sigma(n)-eulerphi(n))%n==0,print1(n,", "))) \\ Derek Orr, Sep 13 2014

Extensions

a(16)-a(26) from Donovan Johnson, Feb 28 2012

A067349 Number of divisors of sigma(n)+phi(n).

Original entry on oeis.org

2, 3, 4, 3, 4, 4, 4, 2, 2, 4, 4, 6, 4, 8, 6, 4, 4, 6, 4, 6, 6, 4, 4, 6, 4, 8, 4, 6, 4, 10, 4, 2, 6, 8, 12, 2, 4, 8, 10, 4, 4, 12, 4, 8, 8, 4, 4, 12, 6, 2, 8, 4, 4, 8, 10, 15, 6, 4, 4, 8, 4, 12, 12, 4, 12, 6, 4, 4, 12, 16, 4, 4, 4, 12, 6, 10, 12, 14, 4, 4, 6, 4, 4, 8, 6, 8, 10, 12, 4, 8, 8, 6, 6, 8
Offset: 1

Views

Author

Labos Elemer, Jan 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ DivisorSigma[ 0, DivisorSigma[ 1, w ]+EulerPhi[ w ] ], {w, 1, 128} ]
  • PARI
    a(n) = numdiv(sigma(n)+eulerphi(n)); \\ Michel Marcus, Aug 13 2019

Formula

a(n) = A000005(A000010(n) + A000203(n)).

A112729 Numbers of the form 2^(k+2)*3*(7*2^k-1) where 7*2^k-1 is prime.

Original entry on oeis.org

312, 85632, 22013952, 1443107438592, 369435881766912, 24211351590301335552, 103986963299971520879061368832
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 01 2005

Keywords

Comments

This sequence is a subsequence of A011251 and A011774, namely if m is in the sequence then phi(m)+sigma(m)=3*m (see Comments line of A011251).
Number of digits of all the 20 known terms of this sequence are respectively 3, 5, 8, 13, 15, 20, 30, 109, 11069, 13566, 14787, 15722, 20988, 25263, 40594, 42272, 101802, 104453, 107155 and 219110.

Examples

			103986963299971520879061368832 is in the sequence because 103986963299971520879061368832=2^(45+2)*3*(7*2^45-1) and 7*2^45-1 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[7*2^n-1], Print[3*2^(n+2)*(7*2^n-1)]], {n, 177}]
Showing 1-6 of 6 results.