cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011251 Numbers n such that phi(n) + sigma(n) = 3n.

Original entry on oeis.org

312, 560, 588, 1400, 85632, 147492, 556160, 569328, 1590816, 2013216, 3343776, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 52021242, 75007400, 137617728, 153587720, 699117024, 904683264, 2468053248, 2834395104, 21669802880, 48444151296
Offset: 1

Views

Author

Keywords

Comments

n is necessarily composite.
From the Math. Rev.: if both q=7*2^{r-2}+2^s-1 and p=49*2^{2r-s-4}+7*2^{r-2}-5*2^{r-s-2}-1 are prime for 1 <= s < r-2, then n=2^r*3*p*q is a solution to the equation phi(n)+sigma(n)=3n . [R. K. Guy]
If 7*2^n-1 is prime then m = 2^(n+2)*3*(7*2^n-1) is in the sequence. Because phi(m) = 2^(n+2)*(7*2^n-2); sigma(m) = 7*2^(n+2)*(2^(n+3)-1) so phi(m)+sigma(m) = 2^(n+2)*((7*2^n-2)+(7*2^(n+3)-7)) = 2^(n+2)*(63*2^n-9) = 3*(2^(n+2)*3*(7*2^n-1)) = 3*m. Hence A112729 = 2^(A001771+2)*3*(7*2^A001771-1) is a subsequence of this sequence. - Farideh Firoozbakht, Dec 01 2005
If both numbers p=7*2^n+2^k-1 & q=49*2^(2n-k)+2^(n-k)*(7*2^k-5)-1 are prime and m=2^(n+2)*3*p*q then phi(m)+sigma(m)=3*m. Namely m is in the sequence. - Farideh Firoozbakht, Jan 11 2007

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math, Hoboken, New Jersey, John Wiley & Sons (2005), 75.
  • Ming Zhi ZHANG, A note on the equation phi(n)+sigma(n)=3n, Sichuan Daxue Xuebao 37 (2000), no. 1, 39-40; MR1755990 (2001a:11009).

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ EulerPhi[n] + DivisorSigma[1, n] == 3 n, Print[n]; Sow[n]], {n, 0, 10^8, 2}]][[2, 1]] (* Jean-François Alcover, Feb 16 2012 *)
  • PARI
    is(n)=eulerphi(n)+sigma(n)==3*n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

More terms from Jud McCranie
a(26)-a(27) from Donovan Johnson, Feb 28 2012

A011774 Nonprimes k that divide sigma(k) + phi(k).

Original entry on oeis.org

1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
Offset: 1

Views

Author

Keywords

Comments

2*k = sigma(k) + phi(k) if and only if k is 1 or a prime.
If 7*2^j - 1 is prime then m = 2^(j+2)*3*(7*2^j - 1) is in the sequence. Because phi(m) = 2^(j+2)*(7*2^j - 2); sigma(m) = 7*2^(j+2)*(2^(j+3) - 1) so phi(m) + sigma(m) = 2^(j+2)*((7*2^j - 2) + (7*2^(j+3) - 7)) = 2^(j+2)* (63*2^(j+2) - 9) = 3*(2^(j+2)*3*(7*2^j - 1)) = 3*m, hence m is a term of A011251 and consequently m is a term of this sequence. A112729 gives such m's. - Farideh Firoozbakht, Dec 01 2005
Conjecture: For n > 1, a(n) is a Zumkeller number (A083207). Verified for all n in [2,63]. - Ivan N. Ianakiev, Jan 25 2023

Examples

			a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}]
    Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
  • PARI
    sp(n)=my(f=factor(n));n*prod(i=1, #f[,1], 1-1/f[i,1]) + prod(i=1, #f[,1], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))
    p=2;forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 19 2012

Extensions

More terms from David W. Wilson
Corrected by Labos Elemer, Feb 12 2004
Showing 1-2 of 2 results.