A011257 Numbers k such that the geometric mean of phi(k) and sigma(k) is an integer.
1, 14, 30, 51, 105, 170, 194, 248, 264, 364, 405, 418, 477, 595, 679, 714, 760, 780, 1023, 1455, 1463, 1485, 1496, 1512, 1524, 1674, 1715, 1731, 1796, 1804, 2058, 2080, 2651, 2754, 2945, 3080, 3135, 3192, 3410, 3534, 3567, 3596, 3828, 3956, 4064, 4381, 4420
Offset: 1
Keywords
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 51, p. 19, Ellipses, Paris 2008.
- Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, 96-01-10).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2000 terms from M. F. Hasler)
- K. Broughan, K. Ford, and F. Luca, On square values of the product of the Euler totient function and sum of divisors function, Colloquium Mathematicum, (to appear).
- Tristan Freiberg, Products of shifted primes simultaneously taking perfect power values, Journal of the Australian Mathematical Society 92:2 (2012), pp. 145-154. arXiv:1008.1978 [math.NT], 2010.
- Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
- Luis Elesban Santos Cruz and Florian Luca, Power values of the product of the Euler function and the sum of divisors function, involve, Vol. 8 (2015), No. 5, 745-748.
Crossrefs
Programs
-
Magma
[k:k in [1..4500]| IsPower(EulerPhi(k)*DivisorSigma(1,k),2)]; // Marius A. Burtea, Sep 19 2019
-
Mathematica
Select[Range[8000], IntegerQ[Sqrt[DivisorSigma[1, #] EulerPhi[#]]] &] (* Carl Najafi, Aug 16 2011 *)
-
PARI
is(n)=issquare(eulerphi(n)*sigma(n)) \\ Charles R Greathouse IV, May 09 2013
Comments