A011266 a(n) = 2^(n*(n-1)/2)*n!.
1, 1, 4, 48, 1536, 122880, 23592960, 10569646080, 10823317585920, 24936923717959680, 127677049435953561600, 1438154284846580917862400, 35344079704389572637386342400, 1882001556099335963795547960115200, 215842994465920643015783804449692057600
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..77
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8.
Programs
-
Maple
a:= n-> 2^(n*(n-1)/2)*n!: seq(a(n), n=0..15); # Alois P. Heinz, Apr 21 2020
-
Mathematica
Table[2^((n(n-1))/2) n!,{n,0,20}] (* Harvey P. Dale, Dec 16 2012 *)
-
PARI
a(n) = n! << binomial(n,2); \\ Kevin Ryde, Mar 10 2022
Formula
From Mehdi Naima, Mar 09 2022: (Start)
a(n) = a(n-1)*n*2^(n-1), a(0) = 1.
G.f. satisfies A(x) = 1 + x * (x * A(2*x))'. (End)
Comments