A134531
G.f.: Sum_{n>=0} a(n)*x^n/(n!*2^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*2^(n*(n-1)/2)) ).
Original entry on oeis.org
0, 1, -1, 5, -79, 3377, -362431, 93473345, -56272471039, 77442176448257, -239804482525402111, 1650172344732021412865, -24981899010711376986398719, 825164608171793476724052668417, -59053816996641612758331731690504191, 9102696765174239045811746247171452452865
Offset: 0
Let g.f. G(x) = Sum_{n>=0} a(n)*x^n/[ n! * 2^(n*(n-1)/2) ]
then exp(G(x)) = Sum_{n>=0} x^n/[ n! * 2^(n*(n-1)/2) ];
G.f.: G(x) = x - x^2/4 + 5x^3/48 - 79x^4/1536 + 3377x^5/122880 + ...
exp(G(x)) = 1 + x + x^2/4 + x^3/48 + x^4/1536 + x^5/122880 + ...
-
a[0] = 0;
a[n_] := a[n] = 1 - Sum[2^(k(n-k)) Binomial[n-1, k-1] a[k], {k, 1, n-1}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 26 2018 *)
-
{a(n)=n!*2^(n*(n-1)/2)*polcoeff(log(sum(k=0,n,x^k/(k!*2^(k*(k-1)/2)))+x*O(x^n)),n)}
A334282
Number of properly colored labeled graphs on n nodes so that the color function is surjective onto {c_1,c_2,...,c_k} for some k, 1<=k<=n.
Original entry on oeis.org
1, 1, 5, 73, 2849, 277921, 65067905, 35545840513, 44384640206849, 124697899490480641, 778525887500557625345, 10693248499002776513697793, 320453350845793018626300755969, 20807125028666778079876193487790081, 2909872870574162514727072641529432735745
Offset: 0
-
b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
add(binomial(n, r)*2^(r*(n-r))*b(r, k-1), r=0..n-1))
end:
a:= n-> add(b(n,k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Apr 21 2020
-
nn = 15; e2[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e2[x] - 1)), {x, 0, nn}], x]
A111636
Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0
T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
...
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)
A046860
Triangle giving a(n,k) = number of k-colored labeled graphs with n nodes.
Original entry on oeis.org
1, 1, 4, 1, 24, 48, 1, 160, 1152, 1536, 1, 1440, 30720, 122880, 122880, 1, 18304, 1152000, 10813440, 29491200, 23592960, 1, 330624, 65630208, 1348730880, 7707033600, 15854469120, 10569646080, 1, 8488960, 5858721792, 261070258176, 2853804441600, 11499774935040, 18940805775360, 10823317585920
Offset: 1
Triangle begins:
1;
1, 4;
1, 24, 48;
1, 160, 1152, 1536;
1, 1440, 30720, 122880, 122880;
1, 18304, 1152000, 10813440, 29491200, 23592960;
...
-
a:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
add(binomial(n, r)*2^(r*(n-r))*a(r, k-1), r=0..n-1))
end:
seq(seq(a(n,k), k=1..n), n=1..8); # Alois P. Heinz, Apr 21 2020
-
a[n_ /; n >= 1, k_ /; k >= 1] := a[n, k] = Sum[ Binomial[n, r]*2^(r*(n - r))*a[r, k - 1], {r, 1, n - 1}]; a[, 0] = 1; Flatten[ Table[ a[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* _Jean-François Alcover, Dec 12 2011, after formula *)
A086206
Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.
Original entry on oeis.org
0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1
A134530
Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.
Original entry on oeis.org
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0
Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}
A197927
The number of isolated nodes in all labeled directed graphs (with self loops allowed) on n nodes.
Original entry on oeis.org
0, 1, 4, 48, 2048, 327680, 201326592, 481036337152, 4503599627370496, 166020696663385964544, 24178516392292583494123520, 13944156602510523416463735259136, 31901471898837980949691369446728269824, 289909687580898100839964337544428699577745408
Offset: 0
-
a = Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,12]! CoefficientList[Series[x a, {x,0,12}], x]
A361560
Number of labeled digraphs on [n] all of whose strongly connected components are complete digraphs.
Original entry on oeis.org
1, 1, 4, 47, 1471, 115042, 21591817, 9455689609, 9464951556046, 21316993121024757, 106689322228222150243, 1174731578884501228621956, 28221161668500867009724237123, 1468937207982284446757761131062629, 164682046577167683717133576752582349216, 39562388056404531283767850863430043742371123
Offset: 0
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn = 15; B[n_] := n! 2^Binomial[n, 2]; a[x_] := Exp[x] - 1; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/Normal[Series[Exp[-(Exp[x] - 1)], {x, 0, nn}]] /.
Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}], {z, 0, nn}], z]
A361584
Number of digraphs on n unlabeled nodes whose strongly connected components are directed cycles or single vertices.
Original entry on oeis.org
1, 1, 3, 12, 88, 1239, 36540, 2226595, 277421616, 69974281748, 35535207035048, 36224521019293188, 74004483908461354689, 302712665772844097945072, 2477999475270966827490305948, 40583406022745170376459610683073, 1329552679157905406495248763876363056
Offset: 0
A381192
Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).
Original entry on oeis.org
1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0
1;
1;
3, 1;
21, 19, 7, 1;
315, 516, 419, 208, 65, 12, 1;
9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1;
...
-
nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid
Showing 1-10 of 15 results.
Comments