cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A134531 G.f.: Sum_{n>=0} a(n)*x^n/(n!*2^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*2^(n*(n-1)/2)) ).

Original entry on oeis.org

0, 1, -1, 5, -79, 3377, -362431, 93473345, -56272471039, 77442176448257, -239804482525402111, 1650172344732021412865, -24981899010711376986398719, 825164608171793476724052668417, -59053816996641612758331731690504191, 9102696765174239045811746247171452452865
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2007

Keywords

Examples

			Let g.f. G(x) = Sum_{n>=0} a(n)*x^n/[ n! * 2^(n*(n-1)/2) ]
then exp(G(x)) = Sum_{n>=0} x^n/[ n! * 2^(n*(n-1)/2) ];
G.f.: G(x) = x - x^2/4 + 5x^3/48 - 79x^4/1536 + 3377x^5/122880 + ...
exp(G(x)) = 1 + x + x^2/4 + x^3/48 + x^4/1536 + x^5/122880 + ...
		

Crossrefs

Cf. related triangles: A134530, A111636.
Cf. A003025, A011266, A118197 (variant).

Programs

  • Mathematica
    a[0] = 0;
    a[n_] := a[n] = 1 - Sum[2^(k(n-k)) Binomial[n-1, k-1] a[k], {k, 1, n-1}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {a(n)=n!*2^(n*(n-1)/2)*polcoeff(log(sum(k=0,n,x^k/(k!*2^(k*(k-1)/2)))+x*O(x^n)),n)}

Formula

Equals column 0 of triangle A134530, which is the matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k).
From Peter Bala, Apr 01 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with a different offset) is E(x)/E(2*x) = Sum_{n >= 0} a(n-1)*x^n/(n!*2^C(n,2)) = 1 - x + 5*x^2/(2!*2) - 79*x^3/(3!*2^3) + 3377*x^4/(4!*2^6) - ....
Recurrence equation:
a(n) = 1 - Sum_{k = 1..n-1} 2^(k*(n-k))*C(n-1,k-1)*a(k) with a(1) = 1. (End)
a(n) = (-1)^(n-1)*A003025(n)/n. - Andrew Howroyd, Jan 07 2022

A334282 Number of properly colored labeled graphs on n nodes so that the color function is surjective onto {c_1,c_2,...,c_k} for some k, 1<=k<=n.

Original entry on oeis.org

1, 1, 5, 73, 2849, 277921, 65067905, 35545840513, 44384640206849, 124697899490480641, 778525887500557625345, 10693248499002776513697793, 320453350845793018626300755969, 20807125028666778079876193487790081, 2909872870574162514727072641529432735745
Offset: 0

Views

Author

Geoffrey Critzer, Apr 21 2020

Keywords

Comments

Also 1 together with the row sums of A046860.
A binary relation R on [n] is periodic iff there is a d>=2 such that R^d = R. Let A be the class of non-arcless strongly connected periodic relations (A000629). Then a(n) is the number of binary relations on [n] whose strongly connected components are in A. - Geoffrey Critzer, Dec 12 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
          add(binomial(n, r)*2^(r*(n-r))*b(r, k-1), r=0..n-1))
        end:
    a:= n-> add(b(n,k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Apr 21 2020
  • Mathematica
    nn = 15; e2[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
    Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e2[x] - 1)), {x, 0, nn}], x]

Formula

Sum_{n>=0} a_n*x^n/(n!*2^C(n,2)) = 1/(2-Sum_{n>=0} x^n/(n!*2^C(n,2))).

A111636 Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 09 2005

Keywords

Comments

Row sums yield A047863. T(2*n,n) = A111637(n). T(n,1) = A001787(n).

Examples

			T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
  1;
  1,  1;
  1,  4,  1;
  1, 12, 12,  1;
  1, 32, 96, 32, 1;
  ...
		

References

  • H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.

Crossrefs

Cf. A134530 (matrix log), A134531.
Cf. A000684, A011266, A038845, A140802, A224069 (matrix inverse).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)

Formula

T(n, k)=2^[k(n-k)]*C(n, k).
Matrix log yields triangle A134530, where A134530(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k). - Paul D. Hanna, Nov 11 2007
From Peter Bala, Aug 13 2012: (Start)
Let f(n) = n!*2^binomial(n,2) = A011266(n). Then T(n,k) = f(n)/(f(k)*f(n-k)).
E.g.f.: Sum_{n >= 0} exp(2^n*t*x)*x^n/n! = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + ....
O.g.f.: Sum_{n >= 0} x^n/(1-2^n*t*x)^(n+1) = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... O.g.f. for column k: 1/(1-2^k*x)^(k+1).
Recurrence equation: T(n,k) = 2^k*T(n-1,k) + 2^(n-k)*T(n-1,k-1).
Column k = 2: A038845. Column k = 3: A140802. Sum_{k = 0..n} k*T(n,k) = n*A000684(n). (End)
From Peter Bala, Apr 09 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function for this sequence is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 4*x + x^2)*z^2/(2!*2) + (1 + 12*x + 12*x^2 + x^3)*z^3/(3!*2^3) + .... Cf. Pascal's triangle A007318 with an e.g.f. of exp(z)*exp(x*z).
This is a generalized Riordan array (E(x), x) with respect to the sequence n!*2^C(n,2), as defined by Wang and Wang.
The n-th power of this triangle has a generating function E(z)^n*E(x*z). See A224069 for the inverse array (n = -1).
The n-th row is a log-concave sequence and hence unimodal.
The row polynomials satisfy the recurrence equation R(n+1,x) = 2^n*x*R(n,x/2) + R(n,2*x) with R(0,x) = 1, as well as R'(n,2*x) = n*2^(n-1)*R(n-1,x) (the ' denotes differentiation w.r.t. x). The row polynomials appear to have only real zeros.
Sum_{k = 0..n} (-1)^k*T(2*n+1,k) = 0;
Sum_{k = 0..n} (-1)^k*2^k*T(2*n,k) = 0;
Sum_{k = 0..n} 2^k*T(n,k) = A000684(n). (End)
T(n,k+1) = Product_{i=0..k} (T(n-i,1)/T(i+1,1)) for 0 <= k < n. - Werner Schulte, Nov 13 2018

A046860 Triangle giving a(n,k) = number of k-colored labeled graphs with n nodes.

Original entry on oeis.org

1, 1, 4, 1, 24, 48, 1, 160, 1152, 1536, 1, 1440, 30720, 122880, 122880, 1, 18304, 1152000, 10813440, 29491200, 23592960, 1, 330624, 65630208, 1348730880, 7707033600, 15854469120, 10569646080, 1, 8488960, 5858721792, 261070258176, 2853804441600, 11499774935040, 18940805775360, 10823317585920
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1,     4;
  1,    24,      48;
  1,   160,    1152,     1536;
  1,  1440,   30720,   122880,   122880;
  1, 18304, 1152000, 10813440, 29491200, 23592960;
  ...
		

Crossrefs

Column #1 gives A000683.
Main diagonal gives A011266.
Row sums give A334282.

Programs

Formula

a(n, k) = Sum_{r=1..n-1} C(n, r) 2^(r*(n-r)) a(r, k-1).
1 + Sum_{n>=1} Sum_{k=1..n} a(n,k)*y^k*x^n/(n!*2^C(n,2)) = 1/(1-y(E(x)-1)) where E(x) = Sum_{n>=0} x^n/(n!*2^C(n,2)). - Geoffrey Critzer, May 06 2020

Extensions

More terms from Vladeta Jovovic, Feb 04 2000

A086206 Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.

Original entry on oeis.org

0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1

Views

Author

Vladeta Jovovic, Aug 27 2003

Keywords

Comments

Equivalently a(n) is the number of labeled digraphs on [n] with no out-nodes. Cf. A362013. - Geoffrey Critzer, Apr 13 2023

Crossrefs

Programs

Formula

a(n) = (2^(n-1)-1)^n = Sum_{k=0..n} (-1)^k*binomial(n, k)*2^((n-k)*(n-1)).
a(n) = A092477(n, n-1).
Sum_{n>=0} a(n)*x^n/A011266(n) = (Sum_{n>=0} (-x)^n/A011266(n))*(Sum_{n>=0} 2^(n(n-1))*x^n/A011266(n)). - Geoffrey Critzer, Apr 13 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 05 2020

A134530 Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.

Original entry on oeis.org

0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2007

Keywords

Examples

			Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
		

Crossrefs

Cf. A134531 (column 0); related triangles: A111636, A117401; A011266.

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}

Formula

T(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k), where A134531 is column 0 and satisfies: G.f.: Sum_{n>=0} A134531(n)*x^n/[n!*2^(n*(n-1)/2)] = log(Sum_{n>=0}x^n/[n!*2^(n*(n-1)/2)]).

A197927 The number of isolated nodes in all labeled directed graphs (with self loops allowed) on n nodes.

Original entry on oeis.org

0, 1, 4, 48, 2048, 327680, 201326592, 481036337152, 4503599627370496, 166020696663385964544, 24178516392292583494123520, 13944156602510523416463735259136, 31901471898837980949691369446728269824, 289909687580898100839964337544428699577745408
Offset: 0

Views

Author

Geoffrey Critzer, Oct 19 2011

Keywords

Comments

Here, isolated means indegree = outdegree = 0.
a(n) is also the number of directed graphs on [n] (no self loops allowed, A053763) with a distinguished vertex of indegree 0. - Geoffrey Critzer, Apr 01 2023

Crossrefs

Programs

  • Mathematica
    a = Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,12]! CoefficientList[Series[x a, {x,0,12}], x]

Formula

E.g.f.: x*A(x) where A(x) = Sum_{n>=0} 2^(n^2)*x^n/n!.
a(n) = n * 2^((n-1)^2) = n*A002416(n-1).
Sum_{n>=0} a(n)*z^n/B(n) = z*Sum_{n>=0} A053763(n)*z^n/B(n) where B(n) = n!*2^binomial(n,2). - Geoffrey Critzer, Apr 01 2023

A361560 Number of labeled digraphs on [n] all of whose strongly connected components are complete digraphs.

Original entry on oeis.org

1, 1, 4, 47, 1471, 115042, 21591817, 9455689609, 9464951556046, 21316993121024757, 106689322228222150243, 1174731578884501228621956, 28221161668500867009724237123, 1468937207982284446757761131062629, 164682046577167683717133576752582349216, 39562388056404531283767850863430043742371123
Offset: 0

Views

Author

Geoffrey Critzer, Mar 15 2023

Keywords

Crossrefs

Cf. A011266 (all strong components are cycles), A361527, A003024 (all strong components are singletons).

Programs

  • Mathematica
    nn = 15; B[n_] := n! 2^Binomial[n, 2]; a[x_] := Exp[x] - 1; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/Normal[Series[Exp[-(Exp[x] - 1)], {x, 0, nn}]] /.
        Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}], {z, 0, nn}], z]

A361584 Number of digraphs on n unlabeled nodes whose strongly connected components are directed cycles or single vertices.

Original entry on oeis.org

1, 1, 3, 12, 88, 1239, 36540, 2226595, 277421616, 69974281748, 35535207035048, 36224521019293188, 74004483908461354689, 302712665772844097945072, 2477999475270966827490305948, 40583406022745170376459610683073, 1329552679157905406495248763876363056
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Crossrefs

The labeled version is A011266.
Cf. A350794, A361583, A361585 (without single vertex components).

Programs

Formula

a(n) >= A361583(n).

A381192 Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 16 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A005329(n).
Sum_{k>=0} T(n,k)*k = A005329(n)*n(n-1)/8.

Examples

			     1;
     1;
     3,     1;
    21,    19,     7,     1;
   315,   516,   419,   208,    65,   12,   1;
  9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1;
  ...
		

Crossrefs

CF. A005329, A381058, A011266 (row sums), A381102.

Programs

  • Mathematica
    nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid
Showing 1-10 of 15 results. Next