cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A224069 Matrix inverse of A111636.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -25, 36, -12, 1, 543, -800, 288, -32, 1, -29281, 43440, -16000, 1920, -80, 1, 3781503, -5621952, 2085120, -256000, 11520, -192, 1, -1138779265, 1694113344, -629658624, 77844480, -3584000, 64512, -448, 1, 783702329343, -1166109967360, 433693016064, -53730869248, 2491023360, -45875200, 344064, -1024, 1
Offset: 0

Views

Author

Peter Bala, Apr 09 2013

Keywords

Comments

Let Q be the class of labeled directed acyclic graphs (dags) with some designated source nodes. Here, a source node is a node of indegree 0 and some means possibly all or none. |a(n,k)| is the number of dags in Q containing n nodes with exactly k designated source nodes. - Geoffrey Critzer, Apr 02 2023

Examples

			Triangle begins
n\k.|......0......1......2......3......4......5
= = = = = = = = = = = = = = = = = = = = = = = =
.0..|......1
.1..|.....-1......1
.2..|......3.....-4......1
.3..|....-25.....36....-12......1
.4..|....543...-800....288....-32......1
.5..|.-29281..43440.-16000...1920....-80......1
...
The sequence of zeros of R(10,x) begins 1, 3.280147..., 9.112469..., 23.366923..., 57.084317....
The sequence of zeros of R(20,x) begins 1, 3.280163..., 9.112696..., 23.369274..., 57.105379....
		

Crossrefs

Cf. A003024 (first column), A111636 (matrix inverse).

Programs

  • Mathematica
    max = 8; A111636 = Table[ Binomial[n, k]*2^(k*(n - k)), {n, 0, max}, {k, 0, max}]; t = Inverse[ A111636 ]; Table[ t[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 10 2013 *)

Formula

T(n,k) = (-1)^(n-k)*A003024(n-k)*A111636(n,k) = (-1)^(n-k)*A003024(n-k)*2^(k*(n-k))*binomial(n,k).
Sum_{k = 1..n} k*2^k*T(n,k) = 0 for n >= 1.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^binomial(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function for this triangle is E(x*z)/E(z) = 1 + (x - 1)*z + (x^2 - 4*x + 3)*z^2/(2!*2) + (x^3 - 12*x^2 + 36*x - 25)*z^3/(3!*2^3) + ....
This triangle is a generalized Riordan array (1/E(x), x) with respect to the sequence n!*2^C(n,2), as defined by Wang and Wang.
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x^n - Sum_{k = 0..n-1} binomial(n,k)*2^(k*(n-k))*R(k,x) with R(0,x) = 1, as well as R'(n,2*x) = n*2^(n-1)*R(n-1,x) (the ' denotes differentiation w.r.t. x). The row polynomials appear to have only positive real zeros of multiplicity 1. Moreover, if r(n,1) < r(n,2) < ... < r(n,n) denotes the zeros of R(n,x) arranged in increasing order then it appears that lim_{n -> oo} r(n,i) exists for each fixed 1 <= i <= n. An example is given below.

A134530 Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.

Original entry on oeis.org

0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2007

Keywords

Examples

			Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
		

Crossrefs

Cf. A134531 (column 0); related triangles: A111636, A117401; A011266.

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}

Formula

T(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k), where A134531 is column 0 and satisfies: G.f.: Sum_{n>=0} A134531(n)*x^n/[n!*2^(n*(n-1)/2)] = log(Sum_{n>=0}x^n/[n!*2^(n*(n-1)/2)]).

A047863 Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Original entry on oeis.org

1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0

Views

Author

Keywords

Comments

Row sums of A111636. - Peter Bala, Sep 30 2012
Column 2 of Table 2 in Read. - Peter Bala, Apr 11 2013
It appears that 5 does not divide a(n), that a(n) is even for n>0, that 3 divides a(2n) for n>0, that 7 divides a(6n+5), and that 13 divides a(12n+3). - Ralf Stephan, May 18 2013

Examples

			For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
		

References

  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.

Crossrefs

Column k=2 of A322280.
Cf. A135079 (variant).

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
    nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
    
  • PARI
    N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
    Vec(serlaplace(egf))  \\ Joerg Arndt, May 04 2013
    
  • Python
    from sympy import binomial
    def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(k*(n-k)).
a(n) = 4 * A000683(n) + 2. - Vladeta Jovovic, Feb 02 2000
E.g.f.: Sum_{n>=0} exp(2^n*x)*x^n/n!. - Paul D. Hanna, Nov 27 2007
O.g.f.: Sum_{n>=0} x^n/(1 - 2^n*x)^(n+1). - Paul D. Hanna, Mar 08 2008
From Peter Bala, Apr 11 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function is E(x)^2 = 1 + 2*x + 6*x^2/(2!*2) + 26*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Stanley). For other examples see A191371 (k = 3) and A223887 (k = 4).
If A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + ... denotes the e.g.f. for this sequence then sqrt(A(x)) = 1 + x + 2*x^2/2! + 7*x^3/3! + ... is the e.g.f. for A047864, which counts labeled 2-colorable graphs. (End)
a(n) ~ c * 2^(n^2/4+n+1/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = EllipticTheta[3, 0, 1/2] = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

Better description from Christian G. Bower, Dec 15 1999

A000684 Number of colored labeled n-node graphs with 2 interchangeable colors.

Original entry on oeis.org

1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1

Views

Author

Keywords

Comments

a(n) = A058872(n) + 1. This sequence counts the empty graph on n nodes which is not allowed in A058872. - Geoffrey Critzer, Oct 07 2012

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

2 * A000683(n) + 1.

Programs

  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
  • PARI
    a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - 2^n*x)^n. - Paul D. Hanna, Sep 14 2009
G.f.: 1/(W(0)-x) where W(k) = x*(x*2^k-1)^k - (x*2^(k+1)-1)^(k+1) + x*((2*x*2^k-1)^(2*k+2))/W(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
From Peter Bala, Apr 01 2013: (Start)
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)*2^(k*(n-k)).
a(n) = Sum_{k = 0..n} 2^k*A111636(n,k).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with an offset of 0) is E(x)*E(2*x) = Sum_{n >= 0} a(n+1)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 13*x^2/(2!*2) + 81*x^3/(3!*2^3) + 721*x^4/(4!*2^6) + .... Cf. A134531. (End)

Extensions

a(15) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference

A134531 G.f.: Sum_{n>=0} a(n)*x^n/(n!*2^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*2^(n*(n-1)/2)) ).

Original entry on oeis.org

0, 1, -1, 5, -79, 3377, -362431, 93473345, -56272471039, 77442176448257, -239804482525402111, 1650172344732021412865, -24981899010711376986398719, 825164608171793476724052668417, -59053816996641612758331731690504191, 9102696765174239045811746247171452452865
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2007

Keywords

Examples

			Let g.f. G(x) = Sum_{n>=0} a(n)*x^n/[ n! * 2^(n*(n-1)/2) ]
then exp(G(x)) = Sum_{n>=0} x^n/[ n! * 2^(n*(n-1)/2) ];
G.f.: G(x) = x - x^2/4 + 5x^3/48 - 79x^4/1536 + 3377x^5/122880 + ...
exp(G(x)) = 1 + x + x^2/4 + x^3/48 + x^4/1536 + x^5/122880 + ...
		

Crossrefs

Cf. related triangles: A134530, A111636.
Cf. A003025, A011266, A118197 (variant).

Programs

  • Mathematica
    a[0] = 0;
    a[n_] := a[n] = 1 - Sum[2^(k(n-k)) Binomial[n-1, k-1] a[k], {k, 1, n-1}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {a(n)=n!*2^(n*(n-1)/2)*polcoeff(log(sum(k=0,n,x^k/(k!*2^(k*(k-1)/2)))+x*O(x^n)),n)}

Formula

Equals column 0 of triangle A134530, which is the matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k).
From Peter Bala, Apr 01 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with a different offset) is E(x)/E(2*x) = Sum_{n >= 0} a(n-1)*x^n/(n!*2^C(n,2)) = 1 - x + 5*x^2/(2!*2) - 79*x^3/(3!*2^3) + 3377*x^4/(4!*2^6) - ....
Recurrence equation:
a(n) = 1 - Sum_{k = 1..n-1} 2^(k*(n-k))*C(n-1,k-1)*a(k) with a(1) = 1. (End)
a(n) = (-1)^(n-1)*A003025(n)/n. - Andrew Howroyd, Jan 07 2022

A381058 Irregular triangular array read by rows. Let S_n be the set of labeled graphs G on [n] with 2-colored nodes where black nodes are only connected to white nodes and vice versa. Orient the edges in each such graph G from black to white. T(n,k) is the number of graphs in S_n containing exactly k descents, n>=0, 0<=k<=A002620(n).

Original entry on oeis.org

1, 2, 5, 1, 16, 8, 2, 67, 56, 30, 8, 1, 374, 436, 358, 188, 68, 16, 2, 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1, 29212, 50460, 66976, 66092, 52412, 34280, 18630, 8376, 3072, 892, 194, 28, 2, 417199, 811790, 1246486, 1471358, 1436404, 1195166, 859650, 537750, 292880, 138280, 56048, 19168, 5382, 1188, 192, 20, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A006116(n).

Examples

			    1;
    2;
    5,    1;
   16,    8,    2;
   67,   56,   30,    8,    1;
  374,  436,  358,  188,   68,  16,   2;
 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1;
 ...
		

Crossrefs

Programs

  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1+y)^Binomial[n,2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,  Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z] /. y -> 1] // Grid

A111637 Number of labeled graphs having n blue nodes and n green ones, where edges join only nodes of different colors.

Original entry on oeis.org

1, 4, 96, 10240, 4587520, 8455716864, 63496796504064, 1932044240141942784, 237409596228641929297920, 117555946699326540948428554240, 234206054295766751302924897412448256, 1875359927045089548108556844295368069873664
Offset: 0

Views

Author

Emeric Deutsch, Aug 09 2005

Keywords

Examples

			a(1) = 4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
		

References

  • H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88.

Crossrefs

Programs

  • Maple
    a:= n-> 2^(n^2)*binomial(2*n,n): seq(a(n),n=0..12);

Formula

a(n) = C(2n,n) * 2^(n^2).
a(n) = A000984(n) * A002416(n).
a(n) = A111636(2n,n).
Showing 1-7 of 7 results.