A000684
Number of colored labeled n-node graphs with 2 interchangeable colors.
Original entry on oeis.org
1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100 (first 32 terms from R. W. Robinson)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (2*A000684)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- A. Nymeyer and R. W. Robinson, Tabulation of the Numbers of Labeled Bipartite Blocks and Related Classes of Bicolored Graphs, 1982 [Annotated scanned copy of unpublished MS and letter from R.W.R.]
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
-
With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
-
a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009
a(15) onwards added by
N. J. A. Sloane, Oct 19 2006 from the Robinson reference
A003025
Number of n-node labeled acyclic digraphs with 1 out-point.
Original entry on oeis.org
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
\\ requires A058876.
my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
\\ see Marcel et al. link (formula for a').
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
A111636
Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0
T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
...
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)
A118197
Column 0 of the matrix log of triangle A117401, after term in row n is multiplied by n: a(n) = n*[log(A117401)](n,0), where A117401(n,k) = 2^(k*(n-k)).
Original entry on oeis.org
0, 1, 0, -1, 4, -11, -186, 10823, -492536, 5125897, 10381552650, -6405856963573, 3302055158456332, 2338316177882689549, -30991279275364493410290, 224870687441604081662836751, -1045565401111374322223949545456, -50507259999091315834370754855632879
Offset: 0
Column 0 of log(A117401) = [0, 1, 0, -1/3, 4/4, -11/5, -186/6, ...] and
consists of terms a(n)/n (n>0); these terms are integers at n = [0, 1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 32, 34, 38, 46, 50, 58, 62, 64, 70, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 +... = x/(1-2*x) - 0*x^2/(1-4*x) - 1*x^3/(1-8*x) + 4*x^4/(1-16*x) - 11*x^5/(1-32*x) - 186*x^6/(1-64*x) + 10823*x^7/(1-128*x) + ...
Define g.f.: G(x) = Sum_{n>=1} a(n)*x^n/[n * 2^(n(n-1)/2)], then G(x) = x + 0*x^2/4 - x^3/24 + 4*x^4/256 - 11*x^5/5120 - 186*x^6/196608 + ... and exp(G(x)) = 1 + x + x^2/2 + x^3/8 + x^4/64 + x^5/1024 + x^6/32768 + ...
-
A118196[n_]:= A118196[n]= If[n<2, (-1)^n, -Sum[2^(j*(n-j))*A118196[j], {j, 0, n-1}]];
a[n_]:= a[n]= -Sum[2^(j*(n-j))*j*A118196[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 30 2021 *)
-
{a(n) = local(T=matrix(n+1,n+1,r,c,if(r>=c,(2^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])};
-
{a(n)=n*2^(n*(n-1)/2)*polcoeff(log(sum(k=0,n,x^k/2^(k*(k-1)/2))+x*O(x^n)),n)}
-
@CachedFunction
def A118196(n): return (-1)^n if (n<2) else -sum(2^(j*(n-j))*A118196(j) for j in (0..n-1))
def a(n): return (-1)*sum(2^(j*(n-j))*j*A118196(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 30 2021
A219765
Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0
Triangle begins:
n\k.|..0.....1......2.......3......4.......5
= = = = = = = = = = = = = = = = = = = = = = =
.0..|..1
.1..|..0.....1
.2..|..0....-1......2
.3..|..0.....5....-12.......8
.4..|..0...-79....208....-192.....64
.5..|..0..3377..-9520...10240..-5120....1024
...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a) o o o (b) o o----o (c) o----o----o
(d) 0
/ \
0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2 + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
- Alois P. Heinz, Rows n = 0..77, flattened
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Exponential structures
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
- Wikipedia, Graph coloring
-
R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
seq(T(n), n=0..10); # Alois P. Heinz, May 16 2024
-
r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
A134530
Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.
Original entry on oeis.org
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0
Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}
A355070
G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*3^(n*(n-1)/2)) ).
Original entry on oeis.org
0, 1, -2, 28, -1808, 469072, -456745472, 1601325615808, -19650153075181568, 826737899840505194752, -117393483573257494026125312, 55564698792825562646890851908608, -86789641569440259960965030826164092928
Offset: 0
-
a(n) = n!*3^(n*(n-1)/2)*polcoef(log(sum(k=0, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);
-
a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=1-sum(j=1, i-1, 3^(j*(i-j))*binomial(i-1, j)*v[i-j+1])); v;
A355071
G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*4^(n*(n-1)/2)) ).
Original entry on oeis.org
0, 1, -3, 81, -13311, 11688705, -51334027263, 1082183686000641, -106464672910860746751, 47880898685034024043741185, -96901748928702482338511172665343, 871602415363671863767026450797790494721
Offset: 0
-
a(n) = n!*4^(n*(n-1)/2)*polcoef(log(sum(k=0, n, x^k/(k!*4^(k*(k-1)/2)))+x*O(x^n)), n);
-
a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=1-sum(j=1, i-1, 4^(j*(i-j))*binomial(i-1, j)*v[i-j+1])); v;
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
For any choice of k sinks we get
A361718.
A059201 counts covering T_0 set-systems.
Cf.
A000169,
A003024,
A003087,
A082402,
A088957,
A334282,
A367862,
A367904,
A367908,
A368600,
A368601.
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
Showing 1-10 of 10 results.
Comments