cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048291 Number of {0,1} n X n matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
Also the number of edge covers in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - R. J. Mathar, Nov 21 2023
These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - Geoffrey Critzer, Jan 15 2024

Examples

			a(2) = 7:  |01|  |01|  |10|  |10|  |11|  |11|  |11|
           |10|  |11|  |01|  |11|  |01|  |10|  |11|.
		

References

  • Brendan McKay, Posting to sci.math.research, Jun 14 1999.

Crossrefs

Cf. A055601, A055599, A104601, A086193 (traceless, no loops), A086206, A322661 (adj. matr. undirected edges).
Diagonal of A183109.

Programs

  • Maple
    seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
    
  • Python
    import math
    f = math.factorial
    def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017

Formula

a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
From Vladeta Jovovic, Feb 23 2008: (Start)
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2014
a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - R. J. Mathar, Nov 18 2023

A092477 Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.

Original entry on oeis.org

1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625, 852891037441, 248155780267521, 67675234241018881, 17878103347812890625
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2004

Keywords

Comments

T(n,1)=1; T(n,2)=A000244(n); T(n,n-1)=A086206(n); T(n,n)=A055601(n).
T(n,k) is the number of n X k binary matrices with no 0 rows. The triangular array becomes a rectangular array by lifting the restriction on k. [From Geoffrey Critzer, Dec 03 2009]
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k, with P(.) denoting the power set.
For nonempty A_j see A218695.
For disjoint A_j see A089072.
For nonempty and disjoint A_j see A019538.
Lifting the restriction on k and swapping n,k gives A329943. (End)

Examples

			Triangle begins
 1
 1,9;
 1,27,343;
 1,81,2401,50625;
 1,243,16807,759375, 28629151 [_Geoffrey Critzer_, Dec 03 2009]
		

Crossrefs

Programs

  • Maple
    A092477 := proc(n,k)
        (2^k-1)^n ;
    end proc:
    seq(seq( A092477(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Nov 18 2023
  • Mathematica
    Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Dec 03 2009 *)

Extensions

More terms from Michel Marcus, Jun 23 2024

A362013 Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 27, 27, 9, 1, 2401, 1372, 294, 28, 1, 759375, 253125, 33750, 2250, 75, 1, 887503681, 171774906, 13852815, 595820, 14415, 186, 1, 3938980639167, 437664515463, 20841167403, 551353635, 8751645, 83349, 441, 1, 67675234241018881, 4263006881324024, 117484441611292, 1850148686792, 18210124870, 114709448, 451612, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 03 2023

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       0,      1;
       1,      2,     1;
      27,     27,     9,    1;
    2401,   1372,   294,   28,  1;
  759375, 253125, 33750, 2250, 75, 1;
  ...
		

Crossrefs

Cf. A086206 (column k=0), A053763 (row sums), A361592, A350792 (a subclass of the digraphs for the case k=1 of this sequence), A003028.

Programs

  • Mathematica
    nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[   Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]
Showing 1-3 of 3 results.