A011541 Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.
2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
Offset: 1
Examples
From _Zak Seidov_, Mar 22 2013: (Start) Values of {b,c}, a(n) = b^3 + c^3: n = 1: {1,1} n = 2: {1, 12}, {9, 10} n = 3: {167, 436}, {228, 423}, {255, 414} n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630} n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954} n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
References
- C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
- R. K. Guy, Unsolved Problems in Number Theory, D1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.
Links
- D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- Christian Boyer, New upper bounds on Taxicab and Cabtaxi numbers
- Christian Boyer, New upper bounds for Taxicab and Cabtaxi numbers, JIS 11 (2008) 08.1.6.
- "Durango" Bill Butler, Durango Bill's Ramanujan Numbers and The Taxicab Problem
- Cristian S. Calude, Elena Calude and Michael J. Dinneen, What is the value of Taxicab(6)?
- Cristian S. Calude, Elena Calude and Michael J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
- Pavel Emelyanov, On Hunting for Taxicab Numbers, arXiv:0802.1147 [math.NT], 2008.
- Shyam Sunder Gupta, On Some Special Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 22, 527-565.
- U. Hollerbach, The sixth taxicab number is 24153319581254312065344, posting to the NMBRTHRY mailing list, Mar 09 2008.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Dave McKee, Taxicab numbers, Apr 24 2001.
- Jean-Charles Meyrignac, The Taxicab Problem
- Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
- Ivars Peterson, Math Trek, Taxicab Numbers
- Randall L. Rathbun, Sixth Taxicab Number?, posting to the NMBRTHRY mailing list, Jul 16 2002.
- Walter Schneider, Taxicab Numbers
- Joseph H. Silverman, Taxicabs and Sums of Two Cubes, American Mathematical Monthly, Volume 100, Issue 4 (Apr., 1993), 331-340.
- Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Taxicab Number
- Wikipedia, Taxicab number
- D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
- D. W. Wilson, Taxicab Numbers (last snapshot available on web.archive.org, as of June 2013).
Formula
a(n) <= A080642(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024
Extensions
Added a(6), confirmed by Uwe Hollerbach, communicated by Christian Schroeder, Mar 09 2008
Comments