cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011755 a(n) = Sum_{k=1..n} k*phi(k).

Original entry on oeis.org

1, 3, 9, 17, 37, 49, 91, 123, 177, 217, 327, 375, 531, 615, 735, 863, 1135, 1243, 1585, 1745, 1997, 2217, 2723, 2915, 3415, 3727, 4213, 4549, 5361, 5601, 6531, 7043, 7703, 8247, 9087, 9519, 10851, 11535, 12471, 13111, 14751, 15255, 17061, 17941, 19021, 20033
Offset: 1

Views

Author

Keywords

Comments

a(n) = Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} y. Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} x = (a(n)+1)/2. - Vladeta Jovovic, Jan 02 2003
Equals row sums of triangle A110663. Example: a(4) = 17 = (6 + 5 + 4 + 2), where row 4 of triangle A110663 = (6, 5, 4, 2). - Gary W. Adamson, Jul 26 2008

Crossrefs

Partial sums of A002618.

Programs

  • Mathematica
    Accumulate[Table[k*EulerPhi[k], {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    a(n) = sum(k=1, n, k*eulerphi(k)); \\ Michel Marcus, Feb 13 2017
    
  • Python
    from sympy import totient
    def A011755(n): return sum(k*totient(k) for k in range(1,n+1)) # Chai Wah Wu, Feb 21 2023

Formula

Asymptotically: a(n) ~ C*n^3 with C=0.20264.... - Benoit Cloitre, Jan 14 2002
Asymptotically: a(n) ~ (2/Pi^2)*n^3. - Vladeta Jovovic, Jan 02 2003
a(n) = Sum_{k=1..n} phi(k^2). - Vaclav Kotesovec, May 08 2024