A011772 Smallest number m such that m(m+1)/2 is divisible by n.
1, 3, 2, 7, 4, 3, 6, 15, 8, 4, 10, 8, 12, 7, 5, 31, 16, 8, 18, 15, 6, 11, 22, 15, 24, 12, 26, 7, 28, 15, 30, 63, 11, 16, 14, 8, 36, 19, 12, 15, 40, 20, 42, 32, 9, 23, 46, 32, 48, 24, 17, 39, 52, 27, 10, 48, 18, 28, 58, 15, 60, 31, 27, 127, 25, 11, 66, 16, 23, 20, 70, 63, 72, 36, 24
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16383 (first 1000 terms from T. D. Noe)
- C. Ashbacher, The Pseudo-Smarandache Function and the Classical Functions of Number Theory, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 79-82.
- Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal (2004), Vol. 14.1, page 246.
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See p. 35.
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See p. 35.
- Eric Weisstein's World of Mathematics, Pseudosmarandache Function
Crossrefs
Programs
-
Haskell
import Data.List (findIndex) import Data.Maybe (fromJust) a011772 n = (+ 1) $ fromJust $ findIndex ((== 0) . (`mod` n)) $ tail a000217_list -- Reinhard Zumkeller, Mar 23 2013
-
Mathematica
Table[m := 1; While[Not[IntegerQ[(m*(m + 1))/(2n)]], m++ ]; m, {n, 1, 90}] (* Stefan Steinerberger, Apr 03 2006 *) (Sqrt[1+8#]-1)/2&/@Flatten[With[{r=Accumulate[Range[300]]},Table[ Select[r, Divisible[#,n]&,1],{n,80}]]] (* Harvey P. Dale, Feb 05 2012 *)
-
PARI
a(n)=if(n==1,return(1)); my(f=factor(if(n%2,n,2*n)), step=vecmax(vector(#f~, i, f[i,1]^f[i,2]))); forstep(m=step,2*n,step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))) \\ Charles R Greathouse IV, Jun 25 2017
-
Python
from math import isqrt def A011772(n): m = (isqrt(8*n+1)-1)//2 while (m*(m+1)) % (2*n): m += 1 return m # Chai Wah Wu, May 30 2021
Formula
a(2^k) = 2^(k+1)-1; a(m) = m-1 for odd prime powers m. - Reinhard Zumkeller, Feb 26 2003
a(n) <= 2n-1 for all numbers n; a(n) <= n-1 for odd n. - Stefan Steinerberger, Apr 03 2006
a(n) >= (sqrt(8n+1)-1)/2 for all n. - Charles R Greathouse IV, Jun 25 2017
a(n) < n-1 for all n except the prime powers where a(n) = n-1 (n odd) or 2n-1 (n = 2^k). - M. F. Hasler, May 30 2021
a(n) = A344005(2*n). - N. J. A. Sloane, Jul 06 2021
a(n) = 2*n-1 iff n is a power of 2. - Shu Shang, Aug 01 2022
Extensions
More terms from Stefan Steinerberger, Apr 03 2006
Comments