A011774 Nonprimes k that divide sigma(k) + phi(k).
1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
Offset: 1
Examples
a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
- Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..63 (terms < 10^13; first 53 terms from Donovan Johnson)
- Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
- Q.-X. Jin and M. Tang, The 4-Nicol Numbers Having Five Different Prime Divisors, J. Int. Seq. 14 (2011) # 11.7.2.
- Eric Weisstein's World of Mathematics, Prime Number.
Programs
-
Mathematica
Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}] Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
-
PARI
sp(n)=my(f=factor(n));n*prod(i=1, #f[,1], 1-1/f[i,1]) + prod(i=1, #f[,1], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)) p=2;forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 19 2012
Extensions
More terms from David W. Wilson
Corrected by Labos Elemer, Feb 12 2004
Comments