cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A201720 The total number of components in (A011800) of all labeled forests on n nodes whose components are all paths.

Original entry on oeis.org

0, 1, 3, 12, 64, 420, 3246, 28798, 288072, 3205044, 39234340, 523821936, 7572221328, 117792884872, 1961516974704, 34807390821960, 655594811020096, 13060711726818768, 274358217793164912, 6060159633360214144, 140404595387426964480
Offset: 0

Views

Author

Geoffrey Critzer, Dec 04 2011

Keywords

Crossrefs

Cf. A011800.

Programs

  • Maple
    A201720 := proc(n)
        g := (2*x-x^2)*exp((2*x-x^2)/(2-2*x))/(2-2*x) ;
        coeftayl(g,x=0,n) ;
        %*n! ;
    end proc:
    seq(A201720(n),n=0..30) ; # R. J. Mathar, Jun 27 2022
  • Mathematica
    D[Range[0, 20]! CoefficientList[ Series[Exp[y (2 x - x^2)/(2 - 2 x)], {x, 0, 20}], x], y] /. y -> 1

Formula

E.g.f.: x*(2-x)*exp[x*(2-x)/(2-2x)]/(2-2x). - R. J. Mathar, Jun 27 2022
D-finite with recurrence 6*(n+1)*a(n) +2*(-6*n^2-19*n+35)*a(n-1) +2*(3*n^3+26*n^2-102*n+75)*a(n-2) -(n-2)*(29*n^2-102*n+85)*a(n-3) +(13*n-15)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 27 2022

A330021 Expansion of e.g.f. exp(sinh(exp(x) - 1)).

Original entry on oeis.org

1, 1, 2, 6, 25, 128, 754, 5001, 37048, 303930, 2732395, 26657106, 280039786, 3149224991, 37729906686, 479570263690, 6442902231289, 91186621152460, 1355582225366134, 21112253012491481, 343672026658191836, 5834977672879651390, 103130592695715620419
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2019

Keywords

Comments

Stirling transform of A003724.
Exponential transform of A024429.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*irem(j, 2)*g(n-j), j=1..n))
        end:
    b:= proc(n, m) option remember; `if`(n=0,
          g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sinh[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A003724(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024429(k) * a(n-k).

A202081 The number of simple labeled graphs on n nodes whose connected components are cycles, stars, wheels, or paths.

Original entry on oeis.org

1, 1, 2, 8, 46, 298, 2206, 19009, 187076, 2053349, 24800484, 327067043, 4677505768, 72075818159, 1189985755128, 20952274850927, 391829421176768, 7755079821666945, 161926610838369418, 3556807008080385549, 81979632030102053376, 1978135038931568355707
Offset: 0

Views

Author

Geoffrey Critzer, Dec 10 2011

Keywords

Comments

Here a cycle is of length 3 or more, a star has at least 4 (total) vertices, a wheel has at least 4 (total) vertices, and a path can be an isolated vertex.

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge 1999, problem 5.15

Crossrefs

Programs

  • Mathematica
    nn = 16; a = x/(2 (1 - x)) + x/2; b = x^4/4! + Sum[(n (n - 2)!/2) x^n/n!, {n, 5, nn}]; c = x Exp[x] - x^3/2 - x^2 - x; d = -x/2 - x^2/4; Range[0, nn]! CoefficientList[Series[Exp[a]*Exp[b]*Exp[c]*Exp[d]/(1 - x)^(1/2), {x, 0, nn}], x]

Formula

E.g.f.: exp(x/2+x/(2*(1-x))) * exp(-x^2/2-x^3/4-x^4/8)/(1-x)^(x/2) * exp(-x-x^2-x^3/2 + x*exp(x)) * exp(-x/2-x^2/4)/(1-x)^(1/2). [corrected by Jason Yuen, Feb 17 2025]

A275488 Number of labeled forests of (free) trees such that exactly one tree is a path.

Original entry on oeis.org

1, 1, 3, 12, 80, 810, 10857, 174944, 3243060, 67859010, 1586109305, 41085509652, 1170954002946, 36469499267474, 1233416773419495, 45037748851872240, 1766375778253548392, 74067278799492363330, 3306928891056821667045, 156635771633727023132300
Offset: 1

Views

Author

Geoffrey Critzer, Jul 30 2016

Keywords

Comments

We could call such a graph a path through a forest.

Examples

			a(1),a(2),a(3),a(4) are just a single path through an empty forest. a(5)=80 counts the 60 labelings of a path on 5 nodes and the 20 labelings of a path on 1 node and a star on 4 nodes.
		

References

  • J. Harris, J. Hirst, M. Mossinghoff, Combinatorics and Graph Theory, Springer, 2010, page 34.

Crossrefs

Programs

  • Mathematica
    nn = 20; b[z_] := 1/((1 - z) 2) - 1/2 + z/2;
    t[z_] := z + Sum[n^(n - 2) z^n/n!, {n, 2, nn}];
    Drop[Range[0, nn]! CoefficientList[Series[b[z] Exp[t[z] - b[z]], {z, 0, nn}], z], 1]

Formula

E.g.f.: B(x)*exp(T(x)-B(x)) where B(x) is the e.g.f. for A001710 - 1 and T(x) is the e.g.f. for A000272 - 1.
a(n) ~ (2*exp(1)-1) * exp((exp(-1)-exp(1)-1)/(2*(exp(1)-1))) * n^(n-2) / (2*(exp(1)-1)). - Vaclav Kotesovec, Jul 31 2016
Showing 1-4 of 4 results.