cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011858 a(n) = floor( n*(n-1)/5 ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 48, 54, 61, 68, 76, 84, 92, 101, 110, 120, 130, 140, 151, 162, 174, 186, 198, 211, 224, 238, 252, 266, 281, 296, 312, 328, 344, 361, 378, 396, 414, 432, 451, 470, 490, 510, 530, 551, 572, 594, 616, 638, 661, 684
Offset: 0

Views

Author

Keywords

Comments

a(n-2) is the total degree of the irreducible factor F(n) of the n-th Somos polynomial. - Michael Somos, Jul 06 2011

Examples

			G.f. = x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 14*x^9 + 18*x^10 + 22*x^11 + ...
F(5) = y + 1 is of degree a(3) = 1, F(6) = y*z + y + z is of degree a(4) = 2.
		

Crossrefs

Cf. A130520.

Programs

  • Magma
    [Floor(n*(n-1)/5): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    a[ n_] := Quotient[ n (n - 1), 5]; (* Michael Somos, Oct 19 2014 *)
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,0,1,2,4,6},60] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    {a(n) = n * (n - 1) \ 5}; /* Michael Somos, Jul 04 2011 */
    

Formula

G.f.: x^3*(x^2+1)/ ((1-x)^3 * (1+x+x^2+x^3+x^4)). a(n) = +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. J. Mathar, Apr 15 2010
Euler transform of length 5 sequence [2, 1, 0, -1, 1]. - Michael Somos, Jul 04 2011
a(1-n) = a(n). a(n) = a(n-5) + 2*n - 6 for all n in Z. - Michael Somos, Jul 04 2011
a(n) = a(n-1) + a(n-5) - a(n-6) + 2 for all n in Z. - Michael Somos, Jul 06 2011
a(n) = (1/5) * ( n^2 - n + [0,0,-2,-1,-2](mod 5) ). - Ralf Stephan, Aug 11 2013
a(n) - 2*a(n+1) + a(n+2) = (n == 1 (mod 5)) + (n == 3 (mod 5)) for all n in Z. - Michael Somos, Oct 19 2014
a(n) = A130520(n) + A130520(n+2). - R. J. Mathar, Aug 11 2021
Sum_{n>=3} 1/a(n) = 50/9 - sqrt(2*(5+sqrt(5)))*Pi/3 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Oct 01 2022