A011897 a(n) = floor(n*(n-1)*(n-2)/15).
0, 0, 0, 0, 1, 4, 8, 14, 22, 33, 48, 66, 88, 114, 145, 182, 224, 272, 326, 387, 456, 532, 616, 708, 809, 920, 1040, 1170, 1310, 1461, 1624, 1798, 1984, 2182, 2393, 2618, 2856, 3108, 3374, 3655, 3952, 4264, 4592, 4936, 5297, 5676, 6072, 6486, 6918, 7369, 7840
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
Crossrefs
Cf. A011886.
Programs
-
Magma
[Floor(n*(n-1)*(n-2)/15): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
-
Mathematica
CoefficientList[Series[x^4(1+x-x^2+x^3)/((1-x)^3*(1-x^5)),{x,0,45}],x] (* Harvey P. Dale, Feb 25 2011 *) Floor[2*Binomial[Range[0, 50], 3]/5] (* G. C. Greubel, Oct 16 2024 *)
-
SageMath
[2*binomial(n,3)//5 for n in range(51)] # G. C. Greubel, Oct 16 2024
Formula
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8).
G.f.: x^4*(1+x-x^2+x^3) / ( (1-x)^4*(1+x+x^2+x^3+x^4) ). (End)