cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011933 a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 36, 73, 131, 219, 344, 516, 746, 1044, 1424, 1899, 2483, 3193, 4044, 5055, 6245, 7633, 9240, 11088, 13200, 15600, 18313, 21365, 24783, 28596, 32833, 37523, 42699, 48392, 54636, 61466, 68916, 77024, 85827, 95363, 105673, 116796, 128775, 141653, 155473, 170280, 186120, 203040, 221088
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(24*Binomial(n,4)/23): n in [0..80]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Floor[(n(n-1)(n-2)(n-3))/23],{n,0,60}] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n) = n*(n-1)*(n-2)*(n-3)\23; \\ Michel Marcus, Jun 14 2017
    
  • SageMath
    [24*binomial(n,4)//23 for n in range(81)] # G. C. Greubel, Nov 03 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-23) - 4*a(n-24) + 6*a(n-25) - 4*a(n-26) + a(n-27) for n > 26.
G.f.: x^4*(1+x^2)*(1 + x + x^3 - x^5 + 4*x^6 - x^7 - x^8 + 2*x^9 + 2*x^11 - x^12 - x^13 + 4*x^14 - x^15 + x^17 + x^19 + x^20)/((1-x)^4*(1-x^23)). (End)

Extensions

More terms added by G. C. Greubel, Nov 03 2024