cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011938 a(n) = floor( n*(n-1)*(n-2)*(n-3)/28 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 30, 60, 108, 180, 282, 424, 612, 858, 1170, 1560, 2040, 2622, 3322, 4152, 5130, 6270, 7590, 9108, 10842, 12814, 15042, 17550, 20358, 23490, 26970, 30822, 35074, 39750, 44880, 50490, 56610, 63270, 70500, 78334, 86802, 95940, 105780
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/28): n in [0..50]]; // Vincenzo Librandi, May 27 2016
    
  • Mathematica
    Table[Floor[n (n-1)(n-2)(n-3)/28], {n, 0, 50}] (* Vincenzo Librandi, May 27 2016 *)
    LinearRecurrence[{4,-6,4,-1,0,0,1,-4,6,-4,1},{0,0,0,0,0,4,12,30,60,108,180}, 50] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    concat(vector(5), Vec(2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4)/((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50))) \\ Colin Barker, May 25 2016
    
  • SageMath
    [6*binomial(n,4)//7 for n in range(61)] # G. C. Greubel, Oct 27 2024

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-7) - 4*a(n-8) + 6*a(n-9) - 4*a(n-10) + a(n-11). - Chai Wah Wu, May 25 2016
G.f.: 2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4) / ((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 25 2016