cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011940 a(n) = floor(n*(n-1)*(n-2)*(n-3)/30).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 28, 56, 100, 168, 264, 396, 572, 800, 1092, 1456, 1904, 2448, 3100, 3876, 4788, 5852, 7084, 8500, 10120, 11960, 14040, 16380, 19000, 21924, 25172, 28768, 32736, 37100, 41888, 47124, 52836, 59052, 65800, 73112, 81016, 89544, 98728, 108600, 119196, 130548, 142692, 155664, 169500
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/30): n in [0..60]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    CoefficientList[Series[4*x^5*(1-x+x^2)/((1-x)^4*(1-x^5)),{x,0,60}],x] (* Vincenzo Librandi, Jun 19 2012 *)
    LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1},{0,0,0,0,0,4,12,28,56},60] (* Harvey P. Dale, Nov 13 2017 *)
    Floor[4*Binomial[Range[0,60], 4]/5] (* G. C. Greubel, Oct 27 2024 *)
  • SageMath
    [4*binomial(n,4)//5 for n in range(61)] # G. C. Greubel, Oct 27 2024

Formula

a(n) = 4 * A011795(n).
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) - 4*a(n-6) + 6*a(n-7) - 4*a(n-8) + a(n-9).
G.f.: 4*x^5*(1-x+x^2) / ((1-x)^5*(1+x+x^2+x^3+x^4) ). (End)