A011968 Apply (1+Shift) to Bell numbers.
1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635
Offset: 0
Keywords
Examples
a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
References
- Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..500 n = 0..200 from Vincenzo Librandi.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
Crossrefs
Programs
-
Maple
with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # Augustine O. Munagi, Jul 17 2008
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A011968_list, blist, b = [1,2], [1], 1 for _ in range(10**2): blist = list(accumulate([b]+blist)) A011968_list.append(b+blist[-1]) b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
Formula
For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - Benoit Cloitre, Mar 09 2008
For n >= 1, a(n) = Bell(n) + Bell(n-1). - Augustine O. Munagi, Jul 17 2008
G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 20 2013
G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - Sergei N. Gladkovskii, Jan 20 2013
a(n) ~ Bell(n) * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
Comments