cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012245 Characteristic function of factorial numbers; also decimal expansion of Liouville's number or Liouville's constant.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Read as decimal fraction 1100010... in any base > 1 (arbitrary decimal point) Liouville's numbers are transcendental; read as a continued fraction it is also transcendental [G. H. Hardy and E. M. Wright, Th. 192].

Examples

			a(25) = a(26) = ... = a(119) = 0 because 4! = 24 and 5! = 120.
0.110001000000000000000001000000000000000000000000000000000000000000000....
		

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 89.
  • John H. Conway and Richard K. Guy, The Book of Numbers, pp. 239-241 (1996).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 162.
  • T. W. Koerner, Fourier Analysis, Camb. Univ. Press 1988, p. 177.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 58.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Cf. A000142, A058304 (continued fraction).

Programs

  • Mathematica
    With[{nn=5},ReplacePart[Table[0,{nn!}],Table[{n!},{n,nn}]->1]] (* Harvey P. Dale, Jul 22 2012 *)
    RealDigits[ Sum[1/10^n!, {n, 5}], 10, 105][[1]] (* Robert G. Wilson v, Aug 03 2018 *)
    CoefficientList[1/x Sum[x^k!, {k, 1, 5}], x] (* Jean-François Alcover, Nov 02 2018 *)
  • PARI
    default(realprecision, 20080); x=10*suminf(n=1, 1.0/10^n!) + 1/10^20040; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b012245.txt", n, " ", d)); \\ Harry J. Smith, May 15 2009
    
  • Python
    from itertools import count
    def A012245(n):
        c = 1
        for i in count(1):
            if (c:=c*i) >= n:
                return int(c==n) # Chai Wah Wu, Jan 11 2023

Formula

G.f.: Sum_{i>=1} x^Product_{j=1..i} j. - Jon Perry, Mar 31 2004
a(A000142(n)) = 1; a(A063992(n)) = 0. - Reinhard Zumkeller, Oct 11 2008