cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012257 Irregular triangle read by rows: row 0 is {2}; if row n is {r_1, ..., r_k} then row n+1 is {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Lionel Levine (levine(AT)ultranet.com)

Keywords

Comments

I have sometimes referred to this as Lionel Levine's triangle in lectures. - N. J. A. Sloane, Mar 21 2021
The shape of each row tends to a limit curve when scaled to a fixed size. It is the same limit curve as this continuous version: start with f_0=x over [0,1]; then repeatedly reverse (1-x), integrate from zero (x-x^2/2), scale to 1 (2x-x^2) and invert (1-sqrt(1-x)). For the limit curve we have f'(0) = F(1) = lim A011784(n+2)/(A011784(n+1)*A011784(n)) ~ 0.27887706 (obtained numerically). - Martin Fuller, Aug 07 2006

Examples

			Initial rows are:
{2},
{1,1},
{1,2},
{1,1,2},
{1,1,2,3},
{1,1,1,2,2,3,4},
{1,1,1,1,2,2,2,3,3,4,4,5,6,7},
...
		

Crossrefs

Programs

  • Haskell
    a012257 n k = a012257_tabf !! (n-1) !! (k-1)
    a012257_row n = a012257_tabf !! (n-1)
    a012257_tabf = iterate (\row -> concat $
                            zipWith replicate (reverse row) [1..]) [1, 1]
    -- Reinhard Zumkeller, Aug 11 2014, May 30 2012
  • Maple
    T:= proc(n) option remember; `if`(n=0, 2, (h->
          seq(i$h[-i], i=1..nops(h)))([T(n-1)]))
        end:
    seq(T(n), n=0..8);  # Alois P. Heinz, Mar 31 2021
  • Mathematica
    row[1] = {1, 1}; row[n_] := row[n] = MapIndexed[ Function[ Table[#2 // First, {#1}]], row[n-1] // Reverse] // Flatten; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 10 2015 *)
    NestList[Flatten@ MapIndexed[ConstantArray[First@ #2, #1] &, Reverse@ #] &, {1, 1}, 6] // Flatten (* Michael De Vlieger, Jul 12 2017 *)

Formula

Sum of row n = A011784(n+2); e.g. row 5 is {1, 1, 1, 2, 2, 3, 4} and the sum of the elements is 1+1+1+2+2+3+4 = 14 = A011784(7). - Benoit Cloitre, Aug 06 2003
T(n,A011784(n+1)) = A011784(n). - Reinhard Zumkeller, Aug 11 2014

Extensions

Initial row {2} added by N. J. A. Sloane, Mar 21 2021