cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012855 a(0) = 0, a(1) = 1, a(2) = 1; thereafter a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 28, 114, 465, 1897, 7739, 31572, 128801, 525456, 2143648, 8745217, 35676949, 145547525, 593775046, 2422362079, 9882257736, 40315615410, 164471408185, 670976837021, 2737314167775, 11167134898976
Offset: 0

Views

Author

Keywords

Comments

Old name was "Take every 5th term of Padovan sequence A000931".
Lim_{n -> infinity} a(n+1)/a(n) = p^5 = 4.0795956..., where p is the plastic constant (A060006). - Jianing Song, Feb 04 2019

Crossrefs

Programs

  • Maple
    A012855 := proc(n,A,B,C) option remember; if n = 0 then A elif n = 1 then B elif n = 2 then C else 5*procname(n-1,A,B,C)-4*procname(n-2,A,B,C)+procname(n-3,A,B,C); fi; end; [ seq(A012855(i,0,1,1),i = 0..40) ]; # R. J. Mathar, Dec 30 2011
  • Mathematica
    CoefficientList[Series[(4x^2-x)/(x^3-4x^2+5x-1),{x,0,40}],x] (* or *) LinearRecurrence[{5,-4,1},{0,1,1},40] (* Harvey P. Dale, Mar 28 2013 *)
  • PARI
    a(n) = my(v=vector(n+1), u=[0,1,1]); for(k=1, n+1, v[k]=if(k<=3, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3])); v[n+1] \\ Jianing Song, Feb 04 2019

Formula

a(n) = A000931(5*n-12) for n >= 3. - Alois P. Heinz, Feb 04 2019
G.f. (4x^2 - x)/(x^3 - 4x^2 + 5x - 1). For n > 2, a(n) = 1 + Sum_{k=0..n-3} A012814(k). - Ralf Stephan, Jan 15 2004
a(n) = 1 + A176476(n-3) = 1 + Sum_{k=0..n-3} A000931(5*k+2) for n >= 3. - Jianing Song, Feb 04 2019

Extensions

Edited by N. J. A. Sloane, Feb 06 2019 at the suggestion of Jianing Song, replacing imprecise definition with formula from Harvey P. Dale, Mar 28 2013