A012814
Take every 5th term of Padovan sequence A000931, beginning with the third term.
Original entry on oeis.org
0, 1, 5, 21, 86, 351, 1432, 5842, 23833, 97229, 396655, 1618192, 6601569, 26931732, 109870576, 448227521, 1828587033, 7459895657, 30433357674, 124155792775, 506505428836, 2066337330754, 8429820731201, 34390259761825, 140298353215075, 572360547759276, 2334999585697905
Offset: 0
G.f. = x + 5*x^2 + 21*x^3 + 86*x^4 + 351*x^5 + 1432*x^6 + 5842*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ulrich Brenner, Anna Hermann, and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 7.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. 19 (2024), no. 19, Paper #1, 27 pp. See Theorem 3.1.
- Index entries for linear recurrences with constant coefficients, signature (5,-4,1).
-
I:=[0, 1, 5 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
-
LinearRecurrence[{5, -4, 1}, {0, 1, 5}, 25] (* Vincenzo Librandi, Feb 03 2012 *)
A012864
Take every 5th term of Padovan sequence A000931, beginning with the first term.
Original entry on oeis.org
1, 1, 3, 12, 49, 200, 816, 3329, 13581, 55405, 226030, 922111, 3761840, 15346786, 62608681, 255418101, 1042002567, 4250949112, 17342153393, 70748973084, 288627200960, 1177482265857, 4803651498529, 19596955630177
Offset: 0
-
I:=[1, 1, 3]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 18 2012
-
LinearRecurrence[{5,-4, 1},{1,1,3},30] (* Vincenzo Librandi, Apr 18 2012 *)
Original entry on oeis.org
0, 1, 6, 27, 113, 464, 1896, 7738, 31571, 128800, 525455, 2143647, 8745216, 35676948, 145547524, 593775045, 2422362078, 9882257735, 40315615409, 164471408184, 670976837020, 2737314167774, 11167134898975, 45557394660800, 185855747875875, 758216295635151
Offset: 0
a(5) = A000931(2) + A000931(7) + A000931(12) + A000931(17) + A000931(22) + A000931(27) = 0 + 1 + 5 + 21 + 86 + 351 = 464.
-
LinearRecurrence[{6,-9,5,-1},{0,1,6,27},30] (* Harvey P. Dale, Feb 08 2025 *)
-
a(n) = my(v=vector(n+1), u=[0,1,6,27]); for(k=1, n+1, v[k]=if(k<=4, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3] + 1)); v[n+1] \\ Jianing Song, Feb 04 2019
New name, more terms and a(0) = 0 prepended by
Jianing Song, Feb 04 2019
A012866
a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
Original entry on oeis.org
0, 1, 2, 6, 23, 93, 379, 1546, 6307, 25730, 104968, 428227, 1746993, 7127025, 29075380, 118615793, 483904470, 1974134558, 8053670703, 32855719753, 134038050511, 546821044246, 2230808738939, 9100797568222
Offset: 0
A012880
a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
Original entry on oeis.org
0, 1, 3, 11, 44, 179, 730, 2978, 12149, 49563, 202197, 824882, 3365185, 13728594, 56007112, 228486369, 932131991, 3802721591, 15513566360, 63289077427, 258193843286, 1053326473082, 4297146069693, 17530618299423
Offset: 0
A012886
a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
Original entry on oeis.org
1, 2, 3, 8, 30, 121, 493, 2011, 8204, 33469, 136540, 557028, 2272449, 9270673, 37820597, 154292742, 629451995, 2567909604, 10476032782, 42737977489, 174353665921, 711292452431, 2901785575960, 11838111735997
Offset: 0
-
LinearRecurrence[{5,-4,1},{1,2,3},30] (* Harvey P. Dale, Sep 16 2023 *)
Showing 1-6 of 6 results.
Comments