cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307978 Expansion of e.g.f. exp((sinh(x) - sin(x))/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Comments

Number of partitions of n-set into blocks congruent to 3 mod 4.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n-1,4*k+2) * a(n-4*k-3). - Seiichi Manyama, Mar 17 2022

A013025 Expansion of e.g.f. exp(sinh(x) + sin(x)).

Original entry on oeis.org

1, 2, 4, 8, 16, 34, 88, 296, 1152, 4546, 17696, 72712, 343424, 1843170, 10274688, 56506024, 315332608, 1910439298, 12815815168, 90064672520, 629185325056, 4400756254114, 32422278027264, 258933905154856, 2168521319694336
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			1+2*x+4/2!*x^2+8/3!*x^3+16/4!*x^4+34/5!*x^5...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sinh[x]+Sin[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sin(x)+sinh(x)))) \\ Seiichi Manyama, Mar 17 2022
    
  • PARI
    a(n) = if(n==0, 1, 2*sum(k=0, (n-1)\4, binomial(n-1, 4*k)*a(n-4*k-1))); \\ Seiichi Manyama, Mar 17 2022

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * a(n-4*k-1). - Seiichi Manyama, Mar 17 2022
Showing 1-2 of 2 results.