cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013587 Number of rational plane curves of degree d passing through 3d-1 general points.

Original entry on oeis.org

1, 1, 12, 620, 87304, 26312976, 14616808192, 13525751027392, 19385778269260800, 40739017561997799680, 120278021410937387514880, 482113680618029292368686080, 2551154673732472157928033617920, 17410560213476464590484763013222400
Offset: 1

Views

Author

Gary Kennedy (kennedy(AT)math.ohio-state.edu)

Keywords

Examples

			G.f. = x + x^2 + 12*x^3 + 620*x^4 + 87304*x^5 + 26312976*x^6 + ...
		

References

  • M. Atiyah, On the unreasonable effectiveness of physics in mathematics, in "Highlights of Mathematical Physics", ed. A. S. Fokas, pp. 25ff.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, American Mathematical Society, 1999, p. 198.
  • P. DiFranceso and C. Itzykson, Quantum intersection rings, in The Moduli Space of Curves, Birkhäuser, Boston, 1995, pp. 81-148.
  • W. Fulton, Enumerative geometry via quantum cohomology, lecture notes, AMS Summer Institute, Santa Cruz, 1995.
  • Yuri I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Mathematical Society, 1999, p. 7.

Crossrefs

Cf. A319851 (Welschinger invariants).

Programs

  • Maple
    a:= proc(d::nonnegint) option remember; if d = 1 then 1 else
           add(a(k)*a(d-k)*(k^2*(d-k)^2*binomial(3*d-4, 3*k-2)-k^3*(d-k)
           *binomial(3*d-4, 3*k-1)), k = 1 .. d-1) fi
        end:
    seq(a(n), n=1..20);
  • Mathematica
    a[n_] := a[n] = Sum[ a[k]*a[n-k]*k^2*(n-k)*(3k-n)*(3n-4)! / (3k-1)! / (3*(n-k)-2)!, {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Nov 09 2011, after PARI *)
  • PARI
    {a(n) = if( n<2, n>0, sum(k=1, n-1, a(k) * a(n-k) * k^2 * (n-k) * (3*k-n) * (3*n-4)! / ((3*k-1)! * (3*(n-k)-2)!) ))}; /* Michael Somos, Dec 11 1999 */
    
  • PARI
    N=20;
    MEM=Vec(1, N);  \\ for memoization
    K(d)= \\ Kontsevich's recursion, see S. Finch link.
    {
        my(m = MEM[d]);
        if ( m, return(m) );  \\ memoized
        MEM[d] =              \\ memoize and return
           sum(d1=1, d-1, my( d2 = d-d1 ); \\ d1+d2=d, both >= 1 and < d
              K(d1) * K(d2) *
              (d1^2 * d2^2 * binomial(3*d-4, 3*d1-2) -
               d1^3 * d2^1 * binomial(3*d-4, 3*d1-1) )
        );
    }
    vector(N, d, K(d) )
    \\ Joerg Arndt, Feb 26 2014; minor edits by M. F. Hasler, Jul 25 2025

Formula

a_d = Sum_{i+j=d} a_i*a_j ( i^2*j^2*binomial(3d-4, 3i-2) - i^3*j*binomial(3d-4, 3i-1) ).
a(n) ~ c * d^n * n^(3*n-4), where d = 0.185519180960019376267112252210617741849455736227434091694584922574606814..., c = 8.73503626335165143920583748513754098083091109391517981485640427521559... - Vaclav Kotesovec, Apr 28 2024

Extensions

Additional terms and references from Michael Somos