cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A060041 Certain numbers a(n) related to Gromov-Witten invariants N_n in dimension n (see formula (7.45) on p. 202 of Cox and Katz).

Original entry on oeis.org

5, 2875, 609250, 317206375, 242467530000, 229305888887625, 248249742118022000, 295091050570845659250, 375632160937476603550000, 503840510416985243645106250, 704288164978454686113488249750, 1017913203569692432490203659468875, 1512323901934139334751675234074638000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

These integers are actually instanton numbers (or BPS states degeneracies). - Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004
Equal to the number of degree-n rational curves on a general quintic for n <= 9, but not for n = 10 (see A076912).

Examples

			G.f. = 5 + 2875*x + 609250*x^2 + 317206375*x^3 + 242467530000*x^4 + ...
		

References

  • J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151-232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.

Crossrefs

Programs

  • Mathematica
    nn=20; y0[x_]:=Sum[(5n)!/(n!)^5 x^n, {n, 0, nn}]; y1[x_]:=Sum[((5n)!/(n!)^5 5 Sum[1/j, {j, n+1, 5n}]) x^n, {n, 0, nn}]; qq=Series[x Exp[y1[x]/y0[x]], {x, 0, nn}]; x[q_]=InverseSeries[qq, q]; s1=(q/x[q] D[x[q], q])^3 5/((1-5^5 x[q]) y0[x[q]]^2); s2=Series[5+Sum[n[d] d^3 q^d/(1-q^d), {d, 1, nn}], {q, 0, nn}]; sol=Solve[s1==s2]; t=Table[n[d]/.sol, {d, 1, nn}]//Flatten; (* Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004 *)
  • PARI
    {a(n) = local(A1, A2, A3); if( n<1, 5*(n==0), A1 = sum( k=0, n, (5*k)! / k!^5 * (-x)^k, x * O(x^n)); A2 = -x * exp(5 / A1 * sum( k=0, n, (sum( i=1, 5*k, 1/i) - sum( i=1, k, 1/i)) * (5*k)! / k!^5 * (-x)^k, x * O(x^n))); A3 = subst(5 / A1^2 / (1 + 5^5*x) / (x * A2'/A2)^3, x, serreverse(A2)); sumdiv( n, k, moebius(n / k) * polcoeff(A3, k))/n^3)}; /* Michael Somos, Mar 27 2004 */
    
  • PARI
    cumsum(v) = for(i=2, #v, v[i] += v[i-1]); v;
    A060345_list(N) = {
      my(x = 'x + O('x^(N+1)), h = cumsum(vector(5*N, n, 1/n)),
         y0 = sum(n=0, N, (5*n)!/n!^5 * x^n),
         y1 = 5 * sum(n = 1, N, ((5*n)!/n!^5 * (h[5*n] - h[n])) * x^n),
         Qx = x * exp(y1/y0), Xq = serreverse(Qx));
      Vec(5 * (x * Xq'/Xq)^3 / ((1 - 3125*Xq) * sqr(subst(y0, 'x, Xq))));
    };
    seq(N) = {
      my(v1 = A060345_list(N+1),
         v2 = dirmul(vector(N, n, moebius(n)), vector(N, n, v1[n+1])));
      concat(5, vector(#v2, n, v2[n]/n^3));
    };
    seq(20)  \\ Gheorghe Coserea, Jul 28 2016

A076912 Number of degree-n rational curves on a general quintic threefold.

Original entry on oeis.org

5, 2875, 609250, 317206375, 242467530000, 229305888887625, 248249742118022000, 295091050570845659250, 375632160937476603550000, 503840510416985243645106250, 704288164978454686113382643750
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2002

Keywords

Examples

			a(1) = 2875 = number of lines in the quintic.
		

References

  • J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151-232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.
  • Ellingsrud, Geir and Stromme, Stein Arild, The number of twisted cubic curves on the general quintic threefold (preliminary version). In Essays on Mirror Manifolds, 181-222, Int. Press, Hong Kong, 1992.

Crossrefs

Coincides with A060041 for n <= 9, but not for n = 10.

Extensions

a(10) = A060041(10) - 6 * 17601000 added by Andrey Zabolotskiy, Sep 10 2022 (see Encyclopedia of Mathematics, Clemens' conjecture)

A171109 Gromov-Witten invariants for genus 1.

Original entry on oeis.org

0, 0, 1, 225, 87192, 57435240, 60478511040, 96212546526096, 220716443548094400, 702901008498298112640, 3011788599493603375929600, 16916605752011965307094124800, 121848941490162387021464335349760, 1104617766019213143798099163667712000
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    (* b = A013587 *) b[n_] := b[n] = If[n==1, 1, Sum[b[k] b[n-k] k^2 (n-k) (3k-n) (3n-4)!/(3k-1)!/(3(n-k)-2)!, {k, 1, n-1}]];
    a[n_] := a[n] = Module[{t1, t2}, t1 = Binomial[n, 3] b[n]; t2 = Sum[ Binomial[3n-1, 3k-1](3k^2-2k)(n-k) b[k] a[n-k], {k, n-1}]; t1/12 + t2/9];
    Array[a, 14] (* Jean-François Alcover, Oct 08 2018, after Gheorghe Coserea *)
  • PARI
    A013587_seq(N) = {
      my(a = vector(N), t1, t2); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1,
        t1 = binomial(3*n-4, 3*k-2)*(k*(n-k))^2;
        t2 = binomial(3*n-4,3*k-1)*k^3*(n-k);
        (t1 - t2)*a[k]*a[n-k])); a;
    };
    A171109_seq(N) = {
      my(a = vector(N), b=A013587_seq(N), t1, t2);
      for (n=3, N, t1 = binomial(n,3)*b[n];
        t2 = sum(k=1,n-1,binomial(3*n-1,3*k-1)*(3*k^2-2*k)*(n-k)*b[k]*a[n-k]);
        a[n] = (t1/12 + t2/9)); a;
    };
    A171109_seq(14) \\ Gheorghe Coserea, Jan 01 2018

Extensions

Terms a(7) and beyond from Gheorghe Coserea, Jan 01 2018

A027363 Generalizing the 27 lines on a cubic surface: number of lines on the generic hypersurface of degree 2n-1 in complex projective (n+1)-space.

Original entry on oeis.org

1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, 289139638632755625, 520764738758073845321, 1192221463356102320754899, 3381929766320534635615064019, 11643962664020516264785825991165
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), Oct 15 1997

Keywords

References

  • Van der Waerden, see one of his 'Zur algebraischen Geometrie' papers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[ (1-x)*Product[ 2n-1-j+j*x, {j, 0, 2n-1}], x, n]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jan 23 2012, from second formula *)
  • PARI
    a(n) = my(x='x); polcoeff((1-x) * prod(j=0, 2*n-1, 2*n-1-j + j*x), n);
    vector(20, n, a(n))  \\ Gheorghe Coserea, Jul 28 2016

Formula

Let b(n, i)=i/(n-i+1) and g(n, k)=s[ k ](b(n, 1), b(n, 2), ..., b(n, n)), where s[ k ] is the k-th elementary symmetric function; a(n) = (2n-1)^2 * (2n-2)! * [ g(2n-2, n-1) - g(2n-2, n) ].
a(n) = [x^n] (1-x)*Product_{j=0..2n-1}(2n-1-j+j*x). [Van der Waerden]
a(n) ~ sqrt(27/Pi) * (2*n-1)^(2*n-3/2) * (1-9/(8*n)+O(1/n^2)). - Gheorghe Coserea, Jul 28 2016

A319851 Welschinger invariant for the number of real plane curves of degree n passing through 3*n-1 general points.

Original entry on oeis.org

1, 1, 8, 240, 18264, 2845440, 792731520, 359935488000, 248962406889600
Offset: 1

Views

Author

Georges Perrotte, Sep 29 2018

Keywords

Comments

a(n) is the Welschinger invariant #n.

Crossrefs

Extensions

a(8)-a(9) added from Arroyo et al. and name clarified by Andrey Zabolotskiy, May 03 2022, based on contribution by Michel Marcus

A238370 Number of rational curves on S of degree d passing through d-1 general points, where S is a general cubic surface in projective 3-space.

Original entry on oeis.org

27, 27, 72, 216, 459, 936
Offset: 1

Views

Author

Steven Finch, Feb 25 2014

Keywords

Comments

Finding a recursive formula (à la Kontsevich for A013587?) remains open.
The famous 27 lines on a cubic surface is the case a(1) = 27. - Michael Somos, Feb 25 2014

Crossrefs

A171117 A particular case of Gromov-Witten numbers: a(n) is the number of complex rational curves of degree n and genus 0 in CP^3 passing through 2n given points.

Original entry on oeis.org

1, 0, 1, 4, 105, 2576, 122129, 7397760, 629336977, 68265049600, 9386419113537, 1583207240397824, 322519291535862713, 77985053716765181952, 22094670475785827572945, 7249172440569540585914368, 2727206213196927179246863137, 1166222035906526210266584842240
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Cf. A013587.

Programs

  • Mathematica
    n[1] = nt[1] = 1;
    n[d_] := n[d] = Sum[With[{d2 = d - d1}, (d2^2 Binomial[2 d - 3, 2 d1 - 2] - d1 d2 Binomial[2 d - 3, 2 d1 - 1]) nt[d1] n[d2]], {d1, d - 1}];
    nt[d_] := nt[d] = d n[d] + Sum[With[{d2 = d - d1}, (d1 d2^2 Binomial[2 d - 2, 2 d1 - 1] - d2^3 Binomial[2 d - 2, 2 d1 - 2]) nt[d1] n[d2]], {d1, d - 1}];
    Table[n[d], {d, 20}] (* Andrey Zabolotskiy, May 03 2022 *)

Formula

a(n) ~ c * d^n * n^(2*n-3), where d = 0.22437689379499207235291475487670864472074175469311760751181993..., c = 2.114876309952735589169436238081913983666848627651832555153... - Vaclav Kotesovec, Apr 28 2024

Extensions

Name edited, terms a(8) and beyond added by Andrey Zabolotskiy, May 03 2022
Showing 1-7 of 7 results.