cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096934 Duplicate of A076912.

Original entry on oeis.org

5, 2875, 609250, 317206375, 242467530000, 229305888887625
Offset: 0

Views

Author

Keywords

A199878 Erroneous version of A076912.

Original entry on oeis.org

5, 2875, 609250, 2683549425
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2011

Keywords

Comments

According to the Yau-Nadis article, the number 2683549425 is the result of an incorrect calculation by Geir Ellingsrud and Stein Stromme around 1989. Included here because of the OEIS policy of including published but incorrect sequences to serve as pointers to the correct versions.

A060041 Certain numbers a(n) related to Gromov-Witten invariants N_n in dimension n (see formula (7.45) on p. 202 of Cox and Katz).

Original entry on oeis.org

5, 2875, 609250, 317206375, 242467530000, 229305888887625, 248249742118022000, 295091050570845659250, 375632160937476603550000, 503840510416985243645106250, 704288164978454686113488249750, 1017913203569692432490203659468875, 1512323901934139334751675234074638000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

These integers are actually instanton numbers (or BPS states degeneracies). - Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004
Equal to the number of degree-n rational curves on a general quintic for n <= 9, but not for n = 10 (see A076912).

Examples

			G.f. = 5 + 2875*x + 609250*x^2 + 317206375*x^3 + 242467530000*x^4 + ...
		

References

  • J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151-232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.

Crossrefs

Programs

  • Mathematica
    nn=20; y0[x_]:=Sum[(5n)!/(n!)^5 x^n, {n, 0, nn}]; y1[x_]:=Sum[((5n)!/(n!)^5 5 Sum[1/j, {j, n+1, 5n}]) x^n, {n, 0, nn}]; qq=Series[x Exp[y1[x]/y0[x]], {x, 0, nn}]; x[q_]=InverseSeries[qq, q]; s1=(q/x[q] D[x[q], q])^3 5/((1-5^5 x[q]) y0[x[q]]^2); s2=Series[5+Sum[n[d] d^3 q^d/(1-q^d), {d, 1, nn}], {q, 0, nn}]; sol=Solve[s1==s2]; t=Table[n[d]/.sol, {d, 1, nn}]//Flatten; (* Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004 *)
  • PARI
    {a(n) = local(A1, A2, A3); if( n<1, 5*(n==0), A1 = sum( k=0, n, (5*k)! / k!^5 * (-x)^k, x * O(x^n)); A2 = -x * exp(5 / A1 * sum( k=0, n, (sum( i=1, 5*k, 1/i) - sum( i=1, k, 1/i)) * (5*k)! / k!^5 * (-x)^k, x * O(x^n))); A3 = subst(5 / A1^2 / (1 + 5^5*x) / (x * A2'/A2)^3, x, serreverse(A2)); sumdiv( n, k, moebius(n / k) * polcoeff(A3, k))/n^3)}; /* Michael Somos, Mar 27 2004 */
    
  • PARI
    cumsum(v) = for(i=2, #v, v[i] += v[i-1]); v;
    A060345_list(N) = {
      my(x = 'x + O('x^(N+1)), h = cumsum(vector(5*N, n, 1/n)),
         y0 = sum(n=0, N, (5*n)!/n!^5 * x^n),
         y1 = 5 * sum(n = 1, N, ((5*n)!/n!^5 * (h[5*n] - h[n])) * x^n),
         Qx = x * exp(y1/y0), Xq = serreverse(Qx));
      Vec(5 * (x * Xq'/Xq)^3 / ((1 - 3125*Xq) * sqr(subst(y0, 'x, Xq))));
    };
    seq(N) = {
      my(v1 = A060345_list(N+1),
         v2 = dirmul(vector(N, n, moebius(n)), vector(N, n, v1[n+1])));
      concat(5, vector(#v2, n, v2[n]/n^3));
    };
    seq(20)  \\ Gheorghe Coserea, Jul 28 2016

A027363 Generalizing the 27 lines on a cubic surface: number of lines on the generic hypersurface of degree 2n-1 in complex projective (n+1)-space.

Original entry on oeis.org

1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, 289139638632755625, 520764738758073845321, 1192221463356102320754899, 3381929766320534635615064019, 11643962664020516264785825991165
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), Oct 15 1997

Keywords

References

  • Van der Waerden, see one of his 'Zur algebraischen Geometrie' papers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[ (1-x)*Product[ 2n-1-j+j*x, {j, 0, 2n-1}], x, n]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jan 23 2012, from second formula *)
  • PARI
    a(n) = my(x='x); polcoeff((1-x) * prod(j=0, 2*n-1, 2*n-1-j + j*x), n);
    vector(20, n, a(n))  \\ Gheorghe Coserea, Jul 28 2016

Formula

Let b(n, i)=i/(n-i+1) and g(n, k)=s[ k ](b(n, 1), b(n, 2), ..., b(n, n)), where s[ k ] is the k-th elementary symmetric function; a(n) = (2n-1)^2 * (2n-2)! * [ g(2n-2, n-1) - g(2n-2, n) ].
a(n) = [x^n] (1-x)*Product_{j=0..2n-1}(2n-1-j+j*x). [Van der Waerden]
a(n) ~ sqrt(27/Pi) * (2*n-1)^(2*n-3/2) * (1-9/(8*n)+O(1/n^2)). - Gheorghe Coserea, Jul 28 2016

A076913 Coefficients of 3-point function in dimension 4.

Original entry on oeis.org

6, 60480, 440884080, 6255156277440, 117715791990353760, 2591176156368821985600
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2002

Keywords

Comments

Klemm and Pandharipande's Table 2 contains the sequence that agrees with the initial terms given here, a(1)-a(5). It continues 63022367592536650014764880, 1642558496795158117310144372160, 45038918271966862868230872208340160. - Andrey Zabolotskiy, Sep 11 2022

Crossrefs

Showing 1-5 of 5 results.