A096934 Duplicate of A076912.
5, 2875, 609250, 317206375, 242467530000, 229305888887625
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 5 + 2875*x + 609250*x^2 + 317206375*x^3 + 242467530000*x^4 + ...
nn=20; y0[x_]:=Sum[(5n)!/(n!)^5 x^n, {n, 0, nn}]; y1[x_]:=Sum[((5n)!/(n!)^5 5 Sum[1/j, {j, n+1, 5n}]) x^n, {n, 0, nn}]; qq=Series[x Exp[y1[x]/y0[x]], {x, 0, nn}]; x[q_]=InverseSeries[qq, q]; s1=(q/x[q] D[x[q], q])^3 5/((1-5^5 x[q]) y0[x[q]]^2); s2=Series[5+Sum[n[d] d^3 q^d/(1-q^d), {d, 1, nn}], {q, 0, nn}]; sol=Solve[s1==s2]; t=Table[n[d]/.sol, {d, 1, nn}]//Flatten; (* Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004 *)
{a(n) = local(A1, A2, A3); if( n<1, 5*(n==0), A1 = sum( k=0, n, (5*k)! / k!^5 * (-x)^k, x * O(x^n)); A2 = -x * exp(5 / A1 * sum( k=0, n, (sum( i=1, 5*k, 1/i) - sum( i=1, k, 1/i)) * (5*k)! / k!^5 * (-x)^k, x * O(x^n))); A3 = subst(5 / A1^2 / (1 + 5^5*x) / (x * A2'/A2)^3, x, serreverse(A2)); sumdiv( n, k, moebius(n / k) * polcoeff(A3, k))/n^3)}; /* Michael Somos, Mar 27 2004 */
cumsum(v) = for(i=2, #v, v[i] += v[i-1]); v; A060345_list(N) = { my(x = 'x + O('x^(N+1)), h = cumsum(vector(5*N, n, 1/n)), y0 = sum(n=0, N, (5*n)!/n!^5 * x^n), y1 = 5 * sum(n = 1, N, ((5*n)!/n!^5 * (h[5*n] - h[n])) * x^n), Qx = x * exp(y1/y0), Xq = serreverse(Qx)); Vec(5 * (x * Xq'/Xq)^3 / ((1 - 3125*Xq) * sqr(subst(y0, 'x, Xq)))); }; seq(N) = { my(v1 = A060345_list(N+1), v2 = dirmul(vector(N, n, moebius(n)), vector(N, n, v1[n+1]))); concat(5, vector(#v2, n, v2[n]/n^3)); }; seq(20) \\ Gheorghe Coserea, Jul 28 2016
a[n_] := Coefficient[ (1-x)*Product[ 2n-1-j+j*x, {j, 0, 2n-1}], x, n]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jan 23 2012, from second formula *)
a(n) = my(x='x); polcoeff((1-x) * prod(j=0, 2*n-1, 2*n-1-j + j*x), n); vector(20, n, a(n)) \\ Gheorghe Coserea, Jul 28 2016
Comments