cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013613 Triangle of coefficients in expansion of (1+6x)^n.

Original entry on oeis.org

1, 1, 6, 1, 12, 36, 1, 18, 108, 216, 1, 24, 216, 864, 1296, 1, 30, 360, 2160, 6480, 7776, 1, 36, 540, 4320, 19440, 46656, 46656, 1, 42, 756, 7560, 45360, 163296, 326592, 279936, 1, 48, 1008, 12096, 90720, 435456, 1306368, 2239488, 1679616
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle begins:
1;
1, 6;
1, 12, 36;
1, 18, 108, 216;
1, 24, 216, 864, 1296;
...
		

Crossrefs

Cf. A038255 (mirrored).

Programs

  • Haskell
    import Data.List (inits)
    a013613 n k = a013613_tabl !! n !! k
    a013613_row n = a013613_tabl !! n
    a013613_tabl = zipWith (zipWith (*))
                   (tail $ inits a000400_list) a007318_tabl
    -- Reinhard Zumkeller, Nov 21 2013

Formula

G.f.: 1 / (1 - x(1+6y)).
T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - Mircea Merca, Apr 28 2012
T(n,k) = A007318(n,k)*A000400(k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013