A081580
Pascal-(1,5,1) array.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 7, 13, 19, 25, ... A016921;
1, 13, 61, 145, 265, ... A081589;
1, 19, 145, 595, 1585, ... A081590;
1, 25, 265, 1585, 6145, ...
The triangle begins as:
1;
1, 1;
1, 7, 1;
1, 13, 13, 1;
1, 19, 61, 19, 1;
1, 25, 145, 145, 25, 1;
1, 31, 265, 595, 265, 31, 1;
1, 37, 421, 1585, 1585, 421, 37, 1;
1, 43, 613, 3331, 6145, 3331, 613, 43, 1;
1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1;
1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
A081580:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081580(n,k,5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 6], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A038255
Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).
Original entry on oeis.org
1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008
Offset: 0
1
6, 1
36, 12, 1
216, 108, 18, 1
1296, 864, 216, 24, 1
7776, 6480, 2160, 360, 30, 1
46656, 46656, 19440, 4320, 540, 36, 1
279936, 326592, 163296, 45360, 7560, 756, 42, 1
1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
-
a038255 n k = a038255_tabl !! n !! k
a038255_row n = a038255_tabl !! n
a038255_tabl = map reverse a013613_tabl
-- Reinhard Zumkeller, Nov 21 2013
-
for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Table[Binomial[n,m]6^(n-m),{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Dec 25 2019 *)
A013620
Triangle of coefficients in expansion of (2+3x)^n.
Original entry on oeis.org
1, 2, 3, 4, 12, 9, 8, 36, 54, 27, 16, 96, 216, 216, 81, 32, 240, 720, 1080, 810, 243, 64, 576, 2160, 4320, 4860, 2916, 729, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 256, 3072, 16128, 48384, 90720, 108864, 81648, 34992, 6561, 512
Offset: 0
Triangle begins:
1;
2,3;
4,12,9;
8,36,54,27;
16,96,216,216,81;
-
a013620 n k = a013620_tabl !! n !! k
a013620_row n = a013620_tabl !! n
a013620_tabl = iterate (\row ->
zipWith (+) (map (* 2) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013, Apr 02 2011
-
Flatten[Table[Binomial[i, j] 2^(i-j) 3^j, {i, 0, 10}, {j, 0, i}]] (* Vincenzo Librandi, Apr 22 2014 *)
A038220
Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.
Original entry on oeis.org
1, 3, 2, 9, 12, 4, 27, 54, 36, 8, 81, 216, 216, 96, 16, 243, 810, 1080, 720, 240, 32, 729, 2916, 4860, 4320, 2160, 576, 64, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 6561, 34992, 81648, 108864, 90720, 48384, 16128, 3072, 256
Offset: 0
Triangle begins:
1;
3, 2;
9, 12, 4;
27, 54, 36, 8;
81, 216, 216, 96, 16;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
-
a038220 n k = a038220_tabl !! n !! k
a038220_row n = a038220_tabl !! n
a038220_tabl = iterate (\row ->
zipWith (+) (map (* 3) (row ++ [0])) (map (* 2) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013, Apr 02 2011
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 t[n - 1, k] + 2 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Table[CoefficientList[ Expand[(3 + 2x)^n], x], {n, 0, 9}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Table[CoefficientList[Binomial[i, j] *3^(i - j)*2^j, x], {i, 0, 9}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
-
T(i,j)=binomial(i,j)*3^(i-j)*2^j \\ Charles R Greathouse IV, Jul 19 2016
A304252
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 6*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 6, 1, 12, 1, 18, 36, 1, 24, 108, 1, 30, 216, 216, 1, 36, 360, 864, 1, 42, 540, 2160, 1296, 1, 48, 756, 4320, 6480, 1, 54, 1008, 7560, 19440, 7776, 1, 60, 1296, 12096, 45360, 46656, 1, 66, 1620, 18144, 90720, 163296, 46656, 1, 72, 1980, 25920, 163296, 435456, 326592, 1, 78, 2376, 35640
Offset: 0
Triangle begins:
1;
1;
1, 6;
1, 12;
1, 18, 36;
1, 24, 108;
1, 30, 216, 216;
1, 36, 360, 864;
1, 42, 540, 2160, 1296;
1, 48, 756, 4320, 6480;
1, 54, 1008, 7560, 19440, 7776;
1, 60, 1296, 12096, 45360, 46656;
1, 66, 1620, 18144, 90720, 163296, 46656;
1, 72, 1980, 25920, 163296, 435456, 326592;
1, 78, 2376, 35640, 272160, 979776, 1306368, 279936;
1, 84, 2808, 47520, 427680, 1959552, 3919104, 2239488;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 6 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* Robert G. Wilson v, May 19 2018 *)
Table[6^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k) + 6*T(n-2,k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
A304255
Triangle read by rows: T(0,0) = 1; T(n,k) = 6*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 6, 36, 1, 216, 12, 1296, 108, 1, 7776, 864, 18, 46656, 6480, 216, 1, 279936, 46656, 2160, 24, 1679616, 326592, 19440, 360, 1, 10077696, 2239488, 163296, 4320, 30, 60466176, 15116544, 1306368, 45360, 540, 1, 362797056, 100776960, 10077696, 435456, 7560, 36
Offset: 0
Triangle begins:
1;
6;
36, 1;
216, 12;
1296, 108, 1;
7776, 864, 18;
46656, 6480, 216, 1;
279936, 46656, 2160, 24;
1679616, 326592, 19440, 360, 1;
10077696, 2239488, 163296, 4320, 30;
60466176, 15116544, 1306368, 45360, 540, 1;
362797056, 100776960, 10077696, 435456, 7560, 36;
2176782336, 665127936, 75582720, 3919104, 90720, 756, 1;
13060694016, 4353564672, 554273280, 33592320, 979776, 12096, 42;
78364164096, 28298170368, 3990767616, 277136640, 9797760, 163296, 1008, 1;
470184984576, 182849716224, 28298170368, 2217093120, 92378880, 1959552, 18144, 48;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 94.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 6 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 6*T(n-1, k) + T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
Showing 1-6 of 6 results.
Comments