A000351
Powers of 5: a(n) = 5^n.
Original entry on oeis.org
1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..100
- O. M. Cain, The Exceptional Selfcondensability of Powers of Five, arXiv:1910.13829 [math.HO], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 270
- IREM Paris-Nord, La pyramide de Sierpinski (in French).
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Box Fractal
- Index entries for linear recurrences with constant coefficients, signature (5).
Sierpinski fractal square-based pyramid:
A020858 (Hausdorff dimension),
A279511 (number of vertices), this sequence (number of pyramids).
-
a000351 = (5 ^)
a000351_list = iterate (* 5) 1 -- Reinhard Zumkeller, Oct 31 2012
-
[5^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
[ seq(5^n,n=0..30) ];
A000351:=-1/(-1+5*z); # Simon Plouffe in his 1992 dissertation
-
Table[5^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 06 2006 *)
5^Range[0, 30] (* Harvey P. Dale, Aug 22 2011 *)
-
makelist(5^n,n,0,20); /* Martin Ettl, Dec 27 2012 */
-
a(n)=5^n \\ Charles R Greathouse IV, Jun 10 2011
-
def a(n): return 5**n
print([a(n) for n in range(24)]) # Michael S. Branicky, Nov 12 2022
-
(List.fill(50)(5: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, May 31 2019
A036561
Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.
Original entry on oeis.org
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The start of the sequence as a triangular array read by rows:
1
2 3
4 6 9
8 12 18 27
16 24 36 54 81
32 48 72 108 162 243
...
The start of the sequence as a table T(n,k) n, k > 0:
1 2 4 8 16 32 ...
3 6 12 24 48 96 ...
9 18 36 72 144 288 ...
27 54 108 216 432 864 ...
81 162 324 648 1296 2592 ...
243 486 972 1944 3888 7776 ...
...
- _Boris Putievskiy_, Jan 08 2013
- Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
- Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.
- Reinhard Zumkeller and Matthew House, Rows n = 0..300 of triangle, flattened [Rows 0 through 120 were computed by Reinhard Zumkeller; rows 121 through 300 by Matthew House, Jul 09 2015]
- Fred Daniel Kline, How do I convert this Nicomachus' Triangle to one with edges?
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Pierre de la Ramée (Petrus Ramus), P. Rami Arithmeticae (anno 1569) Liber 2, Cap. XVI "De inventione continue proportionalium" p.46 (leaf 0055) describes this integer triangle in a layout close to the current OEIS 'tabl' layout.
- Marko Riedel, Proof of identity by Egorychev method.
- Thomas Scheuerle, Version of this triangle from Boethius (480-524), Anicius Manlius Severinus Boethius, De institutione arithmetica, Medeltidshandskrift 1 (Mh 1), Lund University Library, early 10th century, page 4r.
- Robert Sedgewick, Analysis of shellsort and related algorithms, Fourth European Symposium on Algorithms, Barcelona, September, 1996.
Triangle sums (see the comments):
A001047 (Row1);
A015441 (Row2);
A005061 (Kn1, Kn4);
A016133 (Kn2, Kn3);
A016153 (Fi1, Fi2);
A016140 (Ca1, Ca4);
A180844 (Ca2, Ca3);
A180845 (Gi1, Gi4);
A180846 (Gi2, Gi3);
A180847 (Ze1, Ze4);
A016185 (Ze2, Ze3). -
Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum:
A000392; square arrays cumulative sum:
A160869. Antidiagonal products: 6^
A000217; antidiagonal cumulative products: 6^
A000292; square arrays products: 6^
A005449; square array cumulative products: 6^
A006002.
-
a036561 n k = a036561_tabf !! n !! k
a036561_row n = a036561_tabf !! n
a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
-- Reinhard Zumkeller, Jun 08 2013
-
/* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
-
A036561 := proc(n,k): 2^(n-k)*3^k end:
seq(seq(A036561(n,k),k=0..n),n=0..9);
T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
# Johannes W. Meijer, Sep 22 2010, Sep 10 2011
-
Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
-
for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
-
{T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
A038220
Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.
Original entry on oeis.org
1, 3, 2, 9, 12, 4, 27, 54, 36, 8, 81, 216, 216, 96, 16, 243, 810, 1080, 720, 240, 32, 729, 2916, 4860, 4320, 2160, 576, 64, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 6561, 34992, 81648, 108864, 90720, 48384, 16128, 3072, 256
Offset: 0
Triangle begins:
1;
3, 2;
9, 12, 4;
27, 54, 36, 8;
81, 216, 216, 96, 16;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
-
a038220 n k = a038220_tabl !! n !! k
a038220_row n = a038220_tabl !! n
a038220_tabl = iterate (\row ->
zipWith (+) (map (* 3) (row ++ [0])) (map (* 2) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013, Apr 02 2011
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 t[n - 1, k] + 2 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Table[CoefficientList[ Expand[(3 + 2x)^n], x], {n, 0, 9}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Table[CoefficientList[Binomial[i, j] *3^(i - j)*2^j, x], {i, 0, 9}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
-
T(i,j)=binomial(i,j)*3^(i-j)*2^j \\ Charles R Greathouse IV, Jul 19 2016
A154692
Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).
Original entry on oeis.org
2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0
Triangle begins
2;
5, 5;
13, 24, 13;
35, 90, 90, 35;
97, 312, 432, 312, 97;
275, 1050, 1800, 1800, 1050, 275;
793, 3492, 7020, 8640, 7020, 3492, 793;
2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315;
6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
-
A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
[A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154692 := proc(n,m)
(2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
end proc:
seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
-
p=2; q=3;
T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
-
from sage.all import *
def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
A303901
Triangle read by rows of coefficients in expansion of (3-2x)^n, where n is a nonnegative integer.
Original entry on oeis.org
1, 3, -2, 9, -12, 4, 27, -54, 36, -8, 81, -216, 216, -96, 16, 243, -810, 1080, -720, 240, -32, 729, -2916, 4860, -4320, 2160, -576, 64, 2187, -10206, 20412, -22680, 15120, -6048, 1344, -128, 6561, -34992, 81648, -108864, 90720, -48384, 16128, -3072, 256, 19683, -118098, 314928, -489888, 489888, -326592, 145152, -41472, 6912, -512
Offset: 0
Triangle begins:
n \k 0 1 2 3 4 5 6 7 8 9 ...
--------------------------------------------------------------------------
0 | 1
1 | 3 -2
2 | 9 -12 4
3 | 27 -54 36 -8
4 | 81 -216 216 -96 16
5 | 243 -810 1080 -720 240 -32
6 | 729 -2916 4860 -4320 2160 -576 64
7 | 2187 -10206 20412 -22680 15120 -6048 1344 -128
8 | 6561 -34992 81648 -108864 90720 -48384 16128 -3072 256
9 | 19683 -118098 314928 -489888 489888 -326592 145152 -41472 6912 -512
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 394, 396, 398.
-
For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(3 - 2 x)^i],x]]]
A119309
a(n) = binomial(2*n,n) * 6^n.
Original entry on oeis.org
1, 12, 216, 4320, 90720, 1959552, 43110144, 960740352, 21616657920, 489977579520, 11171488813056, 255928652808192, 5886359014588416, 135839054182809600, 3143703825373593600, 72933928748667371520
Offset: 0
a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
-
Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* Indranil Ghosh, Mar 03 2017 *)
-
/* same as in A092566 but use */
steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
/* Joerg Arndt, Jun 30 2011 */
-
a(n)=binomial(2*n,n)*6^n \\ Charles R Greathouse IV, Mar 03 2017
-
import math
f=math.factorial
def C(n,r): return f(n)//f(r)//f(n-r)
def A119309(n): return C(2*n,n)*(6**n) # Indranil Ghosh, Mar 03 2017
A317498
Triangle read by rows of coefficients in expansions of (-2 + 3*x)^n, where n is nonnegative integer.
Original entry on oeis.org
1, -2, 3, 4, -12, 9, -8, 36, -54, 27, 16, -96, 216, -216, 81, -32, 240, -720, 1080, -810, 243, 64, -576, 2160, -4320, 4860, -2916, 729, -128, 1344, -6048, 15120, -22680, 20412, -10206, 2187, 256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561, -512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683
Offset: 0
Triangle begins:
1;
-2, 3;
4, -12, 9;
-8, 36, -54, 27;
16, -96, 216, -216, 81;
-32, 240, -720, 1080, -810, 243;
64, -576, 2160, -4320, 4860, -2916, 729;
-128, 1344, -6048, 15120, -22680, 20412, -10206, 2187;
256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561;
-512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 394-396.
-
Flat(List([0..8],n->List([0..n],k->(-2)^(n-k)*3^k/(Factorial(n-k)*Factorial(k))*Factorial(n)))); # Muniru A Asiru, Aug 01 2018
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 t[n - 1, k] + 3 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
t[n_, k_] := t[n, k] = ((-2)^(n - k) 3^k)/((n - k)! k!) n!;Table[t[n, k], {n, 0, 9}, {k, 0, n} ] // Flatten
Table[CoefficientList[(-2 + 3 x)^n, x], {n, 0, 9}] // Flatten
-
trianglerows(n) = my(v=[]); for(k=0, n-1, v=Vec((-2+3*x)^k + O(x^(k+1))); print(v))
/* Print initial 10 rows of triangle as follows */
trianglerows(10) \\ Felix Fröhlich, Jul 31 2018
Showing 1-7 of 7 results.
Comments