A303941
Triangle read by rows: T(0,0) = 1; T(n,k) = 3*T(n-1,k) - 2*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. Triangle of coefficients of Fermat polynomials.
Original entry on oeis.org
1, 3, 9, -2, 27, -12, 81, -54, 4, 243, -216, 36, 729, -810, 216, -8, 2187, -2916, 1080, -96, 6561, -10206, 4860, -720, 16, 19683, -34992, 20412, -4320, 240, 59049, -118098, 81648, -22680, 2160, -32, 177147, -393660, 314928, -108864, 15120, -576, 531441, -1299078, 1180980, -489888, 90720, -6048, 64
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7
----+--------------------------------------------------------------------
0| 1
1| 3
2| 9 -2
3| 27 -12
4| 81 -54 4
5| 243 -216 36
6| 729 -810 216 -8
7| 2187 -2916 1080 -96
8| 6561 -10206 4860 -720 16
9| 19683 -34992 20412 -4320 240
10| 59049 -118098 81648 -22680 2160 -32
11| 177147 -393660 314928 -108864 15120 -576
12| 531441 -1299078 1180980 -489888 90720 -6048 64
13| 1594323 -4251528 4330260 -2099520 489888 -48384 1344
14| 4782969 -13817466 15588936 -8660520 2449440 -326592 16128 -128
15|14348907 -44641044 55269864 -34642080 11547360 -1959552 145152 -3072
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 104, 394, 395.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 3 t[n - 1, k] - 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}] // Flatten
-
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 3*T(n-1,k) - 2*T(n-2,k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
A302747
Triangle read by rows: T(0,0) = 1; T(n,k) = -2*T(n-1,k) + 3*T(n-2,k-1) for 0 <= k <= floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -2, 4, 3, -8, -12, 16, 36, 9, -32, -96, -54, 64, 240, 216, 27, -128, -576, -720, -216, 256, 1344, 2160, 1080, 81, -512, -3072, -6048, -4320, -810, 1024, 6912, 16128, 15120, 4860, 243, -2048, -15360, -41472, -48384, -22680, -2916, 4096, 33792, 103680, 145152, 90720, 20412, 729, -8192, -73728, -253440
Offset: 0
Triangle begins:
.
n | k = 0 1 2 3 4 5 6
---+-----------------------------------------------------
0 | 1
1 | -2
2 | 4 3
3 | -8 -12
4 | 16 36 9
5 | -32 -96 -54
6 | 64 240 216 27
7 | -128 -576 -720 -216
8 | 256 1344 2160 1080 81
9 | -512 -3072 -6048 -4320 -810
10 | 1024 6912 16128 15120 4860 243
11 | -2048 -15360 -41472 -48384 -22680 -2916
12 | 4096 33792 103680 145152 90720 20412 729
13 | -8192 -73728 -253440 -414720 -326592 -108864 -10206
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 394-396.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -2 t[n - 1, k] + 3 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -2*T(n-1,k) + 3*T(n-2,k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
A317499
Coefficients in expansion of 1/(1 + 2*x - 3*x^3).
Original entry on oeis.org
1, -2, 4, -5, 4, 4, -23, 58, -104, 139, -104, -104, 625, -1562, 2812, -3749, 2812, 2812, -16871, 42178, -75920, 101227, -75920, -75920, 455521, -1138802, 2049844, -2733125, 2049844, 2049844, -12299063, 30747658, -55345784, 73794379, -55345784, -55345784
Offset: 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 396, 397.
-
a:=[1,-2,4];; for n in [4..40] do a[n]:=-2*a[n-1]+3*a[n-3]; od; a; # Muniru A Asiru, Aug 01 2018
-
seq(coeff(series(1/(1+2*x-3*x^3), x,n+1),x,n),n=0..40); # Muniru A Asiru, Aug 01 2018
-
CoefficientList[Series[1/(1 + 2 x - 3 x^3), {x, 0, 40}], x]
a[0] = 1; a[n_] := a[n] = If[n < 0, 0, -2 * a[n - 1] + 3 * a[n - 3]]; Table[a[n], {n, 0, 40}] // Flatten
LinearRecurrence[{-2, 0, 3}, {1, -2, 4}, 41]
-
Vec(1 / ((1 - x)*(1 + 3*x + 3*x^2)) + O(x^40)) \\ Colin Barker, Aug 02 2018
A317502
Triangle read by rows: T(0,0) = 1; T(n,k) = 3 T(n-1,k) - 2 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 3, 9, 27, -2, 81, -12, 243, -54, 729, -216, 4, 2187, -810, 36, 6561, -2916, 216, 19683, -10206, 1080, -8, 59049, -34992, 4860, -96, 177147, -118098, 20412, -720, 531441, -393660, 81648, -4320, 16, 1594323, -1299078, 314928, -22680, 240, 4782969, -4251528, 1180980, -108864, 2160
Offset: 0
Triangle begins:
1;
3;
9;
27, -2;
81, -12;
243, -54;
729, -216, 4;
2187, -810, 36;
6561, -2916, 216;
19683, -10206, 1080, -8;
59049, -34992, 4860, -96;
177147, -118098, 20412, -720;
531441, -393660, 81648, -4320, 16;
1594323, -1299078, 314928, -22680, 240;
4782969, -4251528, 1180980, -108864, 2160;
14348907, -13817466, 4330260, -489888, 15120, -32;
43046721, -44641044, 15588936, -2099520, 90720, -576;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.
-
t[n_, k_] := t[n, k] = 3^(n - 3k) * (-2)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 * t[n - 1, k] - 2 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten
A317503
Triangle read by rows: T(0,0) = 1; T(n,k) = -2 T(n-1,k) + 3 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -2, 4, -8, 3, 16, -12, -32, 36, 64, -96, 9, -128, 240, -54, 256, -576, 216, -512, 1344, -720, 27, 1024, -3072, 2160, -216, -2048, 6912, -6048, 1080, 4096, -15360, 16128, -4320, 81, -8192, 33792, -41472, 15120, -810, 16384, -73728, 103680, -48384, 4860, -32768, 159744, -253440, 145152, -22680, 243
Offset: 0
Triangle begins:
1;
-2;
4;
-8, 3;
16, -12;
-32, 36;
64, -96, 9;
-128, 240, -54;
256, -576, 216;
-512, 1344, -720, 27;
1024, -3072, 2160, -216;
-2048, 6912, -6048, 1080;
4096, -15360, 16128, -4320, 81;
-8192, 33792, -41472, 15120, -810;
16384, -73728, 103680, -48384, 4860;
-32768, 159744, -253440, 145152, -22680, 243;
65536, -344064, 608256, -414720, 90720, -2916;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.
-
t[n_, k_] := t[n, k] = (-2)^(n - 3k) * 3^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 * t[n - 1, k] + 3 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten
Showing 1-5 of 5 results.
Comments