A303901
Triangle read by rows of coefficients in expansion of (3-2x)^n, where n is a nonnegative integer.
Original entry on oeis.org
1, 3, -2, 9, -12, 4, 27, -54, 36, -8, 81, -216, 216, -96, 16, 243, -810, 1080, -720, 240, -32, 729, -2916, 4860, -4320, 2160, -576, 64, 2187, -10206, 20412, -22680, 15120, -6048, 1344, -128, 6561, -34992, 81648, -108864, 90720, -48384, 16128, -3072, 256, 19683, -118098, 314928, -489888, 489888, -326592, 145152, -41472, 6912, -512
Offset: 0
Triangle begins:
n \k 0 1 2 3 4 5 6 7 8 9 ...
--------------------------------------------------------------------------
0 | 1
1 | 3 -2
2 | 9 -12 4
3 | 27 -54 36 -8
4 | 81 -216 216 -96 16
5 | 243 -810 1080 -720 240 -32
6 | 729 -2916 4860 -4320 2160 -576 64
7 | 2187 -10206 20412 -22680 15120 -6048 1344 -128
8 | 6561 -34992 81648 -108864 90720 -48384 16128 -3072 256
9 | 19683 -118098 314928 -489888 489888 -326592 145152 -41472 6912 -512
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 394, 396, 398.
-
For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(3 - 2 x)^i],x]]]
A317498
Triangle read by rows of coefficients in expansions of (-2 + 3*x)^n, where n is nonnegative integer.
Original entry on oeis.org
1, -2, 3, 4, -12, 9, -8, 36, -54, 27, 16, -96, 216, -216, 81, -32, 240, -720, 1080, -810, 243, 64, -576, 2160, -4320, 4860, -2916, 729, -128, 1344, -6048, 15120, -22680, 20412, -10206, 2187, 256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561, -512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683
Offset: 0
Triangle begins:
1;
-2, 3;
4, -12, 9;
-8, 36, -54, 27;
16, -96, 216, -216, 81;
-32, 240, -720, 1080, -810, 243;
64, -576, 2160, -4320, 4860, -2916, 729;
-128, 1344, -6048, 15120, -22680, 20412, -10206, 2187;
256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561;
-512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 394-396.
-
Flat(List([0..8],n->List([0..n],k->(-2)^(n-k)*3^k/(Factorial(n-k)*Factorial(k))*Factorial(n)))); # Muniru A Asiru, Aug 01 2018
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 t[n - 1, k] + 3 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
t[n_, k_] := t[n, k] = ((-2)^(n - k) 3^k)/((n - k)! k!) n!;Table[t[n, k], {n, 0, 9}, {k, 0, n} ] // Flatten
Table[CoefficientList[(-2 + 3 x)^n, x], {n, 0, 9}] // Flatten
-
trianglerows(n) = my(v=[]); for(k=0, n-1, v=Vec((-2+3*x)^k + O(x^(k+1))); print(v))
/* Print initial 10 rows of triangle as follows */
trianglerows(10) \\ Felix Fröhlich, Jul 31 2018
A317502
Triangle read by rows: T(0,0) = 1; T(n,k) = 3 T(n-1,k) - 2 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 3, 9, 27, -2, 81, -12, 243, -54, 729, -216, 4, 2187, -810, 36, 6561, -2916, 216, 19683, -10206, 1080, -8, 59049, -34992, 4860, -96, 177147, -118098, 20412, -720, 531441, -393660, 81648, -4320, 16, 1594323, -1299078, 314928, -22680, 240, 4782969, -4251528, 1180980, -108864, 2160
Offset: 0
Triangle begins:
1;
3;
9;
27, -2;
81, -12;
243, -54;
729, -216, 4;
2187, -810, 36;
6561, -2916, 216;
19683, -10206, 1080, -8;
59049, -34992, 4860, -96;
177147, -118098, 20412, -720;
531441, -393660, 81648, -4320, 16;
1594323, -1299078, 314928, -22680, 240;
4782969, -4251528, 1180980, -108864, 2160;
14348907, -13817466, 4330260, -489888, 15120, -32;
43046721, -44641044, 15588936, -2099520, 90720, -576;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.
-
t[n_, k_] := t[n, k] = 3^(n - 3k) * (-2)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 * t[n - 1, k] - 2 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten
A317503
Triangle read by rows: T(0,0) = 1; T(n,k) = -2 T(n-1,k) + 3 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -2, 4, -8, 3, 16, -12, -32, 36, 64, -96, 9, -128, 240, -54, 256, -576, 216, -512, 1344, -720, 27, 1024, -3072, 2160, -216, -2048, 6912, -6048, 1080, 4096, -15360, 16128, -4320, 81, -8192, 33792, -41472, 15120, -810, 16384, -73728, 103680, -48384, 4860, -32768, 159744, -253440, 145152, -22680, 243
Offset: 0
Triangle begins:
1;
-2;
4;
-8, 3;
16, -12;
-32, 36;
64, -96, 9;
-128, 240, -54;
256, -576, 216;
-512, 1344, -720, 27;
1024, -3072, 2160, -216;
-2048, 6912, -6048, 1080;
4096, -15360, 16128, -4320, 81;
-8192, 33792, -41472, 15120, -810;
16384, -73728, 103680, -48384, 4860;
-32768, 159744, -253440, 145152, -22680, 243;
65536, -344064, 608256, -414720, 90720, -2916;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.
-
t[n_, k_] := t[n, k] = (-2)^(n - 3k) * 3^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 * t[n - 1, k] + 3 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten
Showing 1-4 of 4 results.
Comments