cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A174667 Sequence A154692 adjusted to leading one:t(n,m)=A154692(n,m)-A154692(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 56, 56, 1, 1, 216, 336, 216, 1, 1, 776, 1526, 1526, 776, 1, 1, 2700, 6228, 7848, 6228, 2700, 1, 1, 9236, 24146, 35486, 35486, 24146, 9236, 1, 1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1, 1, 104816, 336206, 614846, 796286
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Row sums are:
1, 2, 14, 114, 770, 4606, 25706, 137738, 719906, 3704310, 18870458,...

Examples

			{1},
{1, 1},
{1, 12, 1},
{1, 56, 56, 1},
{1, 216, 336, 216, 1},
{1, 776, 1526, 1526, 776, 1},
{1, 2700, 6228, 7848, 6228, 2700, 1},
{1, 9236, 24146, 35486, 35486, 24146, 9236, 1},
{1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1},
{1, 104816, 336206, 614846, 796286, 796286, 614846, 336206, 104816, 1},
{1, 348948, 1224588, 2454168, 3478008, 3859032, 3478008, 2454168, 1224588, 348948, 1}
		

Crossrefs

A154692(n, m)

Programs

  • Mathematica
    a = 2; b = 3;
    t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154692(n,m)-A154692(n,0)+1

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A174673 Triangle read by rows: T(n,m)=A154694(n,m)-A154694(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 36, 1, 1, 296, 296, 1, 1, 1932, 4656, 1932, 1, 1, 11696, 54086, 54086, 11696, 1, 1, 69048, 556596, 1042920, 556596, 69048, 1, 1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1, 1, 2381700, 51004320, 247754256, 404837664
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Reduces the values in the triangle A154694 such that each row starts with 1.
Row sums are:
1, 2, 38, 594, 8522, 131566, 2294210, 45356618, 1007118218, 24839902470,
673894929842,...

Examples

			{1},
{1, 1},
{1, 36, 1},
{1, 296, 296, 1},
{1, 1932, 4656, 1932, 1},
{1, 11696, 54086, 54086, 11696, 1},
{1, 69048, 556596, 1042920, 556596, 69048, 1},
{1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1},
{1, 2381700, 51004320, 247754256, 404837664, 247754256, 51004320, 2381700, 1},
{1, 14050376, 473595806, 3441231326, 8491073726, 8491073726, 3441231326, 473595806, 14050376, 1},
{1, 83216400, 4357421004, 46167420504, 164067684600, 244543444824, 164067684600, 46167420504, 4357421004, 83216400, 1}
		

Crossrefs

Programs

  • Maple
    A174673 := proc(n,m)
        A154694(n,m)-A154694(n,0)+1 ;
    end proc:
    seq(seq( A174673(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
  • Mathematica
    Clear[t, p, q, n, m];
    p = 2; q = 3;
    t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154694(n,m)-A154694(n,0)+1

A174672 Sequence A154693 adjusted to leading one:t(n,m)=A154693(n,m)-A154693(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 58, 58, 1, 1, 244, 512, 244, 1, 1, 994, 3592, 3592, 994, 1, 1, 4016, 23756, 38592, 23756, 4016, 1, 1, 16174, 154420, 374728, 374728, 154420, 16174, 1, 1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1, 1, 260842, 6314368
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Row sums are:
1, 2, 14, 118, 1002, 9174, 94138, 1090646, 14172218, 204490006, 3245253882,...

Examples

			{1},
{1, 1},
{1, 12, 1},
{1, 58, 58, 1},
{1, 244, 512, 244, 1},
{1, 994, 3592, 3592, 994, 1},
{1, 4016, 23756, 38592, 23756, 4016, 1},
{1, 16174, 154420, 374728, 374728, 154420, 16174, 1},
{1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1},
{1, 260842, 6314368, 32773312, 62896480, 62896480, 32773312, 6314368, 260842, 1},
{1, 1045480, 39684596, 299673344, 779048096, 1006350848, 779048096, 299673344, 39684596, 1045480, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, p, q, n, m];
    p = 2; q = 1;
    t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154693(n,m)-A154693(n,0)+1

A174674 Sequence A154695 adjusted to leading one:t(n,m)=A154695(n,m)-A154695(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Row sums are:
1, 2, 22, 262, 3314, 48774, 847266, 17120870, 395224450, 10263445126,
296140564130,...

Examples

			{1},
{1, 1},
{1, 20, 1},
{1, 130, 130, 1},
{1, 744, 1824, 744, 1},
{1, 4234, 20152, 20152, 4234, 1},
{1, 24484, 210796, 376704, 210796, 24484, 1},
{1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1},
{1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1},
{1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1},
{1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, p, q, n, m, a];
    p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
    a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
    p = 2; q = 1;
    t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154695(n,m)-A154695(n,0)+1

A174675 Sequence A154696 adjusted to leading one:t(n,m)=A154696(n,m)-A154696(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 60, 1, 1, 656, 656, 1, 1, 5832, 16464, 5832, 1, 1, 49496, 302486, 302486, 49496, 1, 1, 419412, 4933332, 10171944, 4933332, 419412, 1, 1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1, 1, 31167600, 1157982288
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Row sums are:
1, 2, 62, 1314, 28130, 703966, 20877434, 721034138, 28453293026,
1263142713270, 62305874244266,...

Examples

			{1},
{1, 1},
{1, 60, 1},
{1, 656, 656, 1},
{1, 5832, 16464, 5832, 1},
{1, 49496, 302486, 302486, 49496, 1},
{1, 419412, 4933332, 10171944, 4933332, 419412, 1},
{1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1},
{1, 31167600, 1157982288, 6978681888, 12117629472, 6978681888, 1157982288, 31167600, 1},
{1, 273237776, 17387745806, 164112248126, 449798124926, 449798124926, 164112248126, 17387745806, 273237776, 1},
{1, 2414712204, 260247533196, 3735760480536, 15279843395064, 23749342002264, 15279843395064, 3735760480536, 260247533196, 2414712204, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, p, q, n, m, a];
    p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
    a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
    p = 2; q = 3;
    t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154696(n,m)-A154696(n,0)+1
Showing 1-6 of 6 results.