cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013614 Triangle of coefficients in expansion of (1+7x)^n.

Original entry on oeis.org

1, 1, 7, 1, 14, 49, 1, 21, 147, 343, 1, 28, 294, 1372, 2401, 1, 35, 490, 3430, 12005, 16807, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 49, 1029, 12005, 84035, 352947, 823543, 823543, 1, 56, 1372, 19208, 168070, 941192, 3294172, 6588344, 5764801
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,7} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle starts:
1;
1, 7;
1, 14, 49;
1, 21, 147, 343;
1, 28, 294, 1372, 2401;
1, 35, 490, 3430, 12005, 16807;
...
		

Crossrefs

Cf. A000420 (right edge).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+7*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    T[n_, k_] := 7^k*Binomial[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2016 *)

Formula

G.f.: 1 / (1 - x(1+7y)).
T(n,k) = 7^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*6^(n-i). Row sums are 8^n = A001018. - Mircea Merca, Apr 28 2012