cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081582 Pascal-(1,7,1) array.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A017077, A081593, A081594. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows begin
  1,  1,   1,    1,     1, ... A000012;
  1,  9,  17,   25,    33, ... A017077;
  1, 17,  97,  241,   449, ... A081593;
  1, 25, 241, 1161,  3297, ...
  1, 33, 449, 3297, 14721, ...
Triangle begins:
  1;
  1,  1;
  1,  9,    1;
  1, 17,   17,    1;
  1, 25,   97,   25,     1;
  1, 33,  241,  241,    33,    1;
  1, 41,  449, 1161,   449,   41,    1;
  1, 49,  721, 3297,  3297,  721,   49,  1;
  1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A143683 (m = 8).

Programs

  • Magma
    A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

T(n,k) = Sum_{j = 0..n-k} binomial(n-k,j)*binomial(k,j)*8^j.
Riordan array (1/(1 - x), x*(1 + 7*x)/(1 - x)).
Square array T(n, k) defined by T(n, 0) = T(0, k)=1, T(n, k) = T(n, k-1) + 7*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1 + 7*x)^k/(1 - x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 8). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(8*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 16*x + 64*x^2/2) = 1 + 17*x + 97*x^2/2! + 241*x^3/3! + 449*x^4/4! + 721*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k) = A015519(n+1). - G. C. Greubel, May 26 2021

A081581 Pascal-(1,6,1) array.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016993, A081591, A081592. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows start as:
  1,  1,   1,    1,    1, ... A000012;
  1,  8,  15,   22,   29, ... A016993;
  1, 15,  78,  190,  351, ... A081591;
  1, 22, 190,  848, 2339, ...
  1, 29, 351, 2339, 9766, ...
The triangle starts as:
  1;
  1,  1;
  1,  8,   1;
  1, 15,  15,    1;
  1, 22,  78,   22,    1;
  1, 29, 190,  190,   29,   1;
  1, 36, 351,  848,  351,  36,  1;
  1, 43, 561, 2339, 2339, 561, 43, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • PARI
    t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
    
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 6*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+6*x)^k/(1-x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 7). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(7*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 14*x + 49*x^2/2) = 1 + 15*x + 78*x^2/2! + 190*x^3/3! + 351*x^4/4! + 561*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 6.
Sum_{k=0..n} T(n, k, 6) = A083099(n+1). (End)

A317014 Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-7x-x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 7.14005494464025913554... ((7+sqrt(53))/2), a metallic mean (see A176439), when n approaches infinity.

Examples

			Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.

Crossrefs

Row sums give A054413.
Cf. A000420 (column 0), A027473 (column 1), A027474 (column 2), A140107 (column 3), A139641 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A317016 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 7 * T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 7, 1, 14, 1, 21, 49, 1, 28, 147, 1, 35, 294, 343, 1, 42, 490, 1372, 1, 49, 735, 3430, 2401, 1, 56, 1029, 6860, 12005, 1, 63, 1372, 12005, 36015, 16807, 1, 70, 1764, 19208, 84035, 100842, 1, 77, 2205, 28812, 168070, 352947, 117649, 1, 84, 2695, 41160, 302526, 941192, 823543
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-x-7*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015442).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.192582403567252..., when n approaches infinity (see A223140).

Examples

			Triangle begins:
  1;
  1;
  1,  7;
  1, 14;
  1, 21,   49;
  1, 28,  147;
  1, 35,  294,   343;
  1, 42,  490,  1372;
  1, 49,  735,  3430,   2401;
  1, 56, 1029,  6860,  12005;
  1, 63, 1372, 12005,  36015,  16807;
  1, 70, 1764, 19208,  84035, 100842;
  1, 77, 2205, 28812, 168070, 352947, 117649;
  1, 84, 2695, 41160, 302526, 941192, 823543;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pages 70, 96.

Crossrefs

Row sums give A015442.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->7^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 7 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[7^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten

Formula

T(n,k) = 7^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Showing 1-4 of 4 results.