A081582
Pascal-(1,7,1) array.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0
Rows begin
1, 1, 1, 1, 1, ... A000012;
1, 9, 17, 25, 33, ... A017077;
1, 17, 97, 241, 449, ... A081593;
1, 25, 241, 1161, 3297, ...
1, 33, 449, 3297, 14721, ...
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 17, 17, 1;
1, 25, 97, 25, 1;
1, 33, 241, 241, 33, 1;
1, 41, 449, 1161, 449, 41, 1;
1, 49, 721, 3297, 3297, 721, 49, 1;
1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A143683 (m = 8).
-
A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A081581
Pascal-(1,6,1) array.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0
Rows start as:
1, 1, 1, 1, 1, ... A000012;
1, 8, 15, 22, 29, ... A016993;
1, 15, 78, 190, 351, ... A081591;
1, 22, 190, 848, 2339, ...
1, 29, 351, 2339, 9766, ...
The triangle starts as:
1;
1, 1;
1, 8, 1;
1, 15, 15, 1;
1, 22, 78, 22, 1;
1, 29, 190, 190, 29, 1;
1, 36, 351, 848, 351, 36, 1;
1, 43, 561, 2339, 2339, 561, 43, 1;
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081582 (m = 7),
A143683 (m = 8).
-
A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
-
flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A317014
Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0
Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A317016
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 7 * T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 7, 1, 14, 1, 21, 49, 1, 28, 147, 1, 35, 294, 343, 1, 42, 490, 1372, 1, 49, 735, 3430, 2401, 1, 56, 1029, 6860, 12005, 1, 63, 1372, 12005, 36015, 16807, 1, 70, 1764, 19208, 84035, 100842, 1, 77, 2205, 28812, 168070, 352947, 117649, 1, 84, 2695, 41160, 302526, 941192, 823543
Offset: 0
Triangle begins:
1;
1;
1, 7;
1, 14;
1, 21, 49;
1, 28, 147;
1, 35, 294, 343;
1, 42, 490, 1372;
1, 49, 735, 3430, 2401;
1, 56, 1029, 6860, 12005;
1, 63, 1372, 12005, 36015, 16807;
1, 70, 1764, 19208, 84035, 100842;
1, 77, 2205, 28812, 168070, 352947, 117649;
1, 84, 2695, 41160, 302526, 941192, 823543;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pages 70, 96.
-
Flat(List([0..13],n->List([0..Int(n/2)],k->7^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 7 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
Table[7^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
Showing 1-4 of 4 results.
Comments