cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013619 Triangle of coefficients in expansion of (1+12x)^n.

Original entry on oeis.org

1, 1, 12, 1, 24, 144, 1, 36, 432, 1728, 1, 48, 864, 6912, 20736, 1, 60, 1440, 17280, 103680, 248832, 1, 72, 2160, 34560, 311040, 1492992, 2985984, 1, 84, 3024, 60480, 725760, 5225472, 20901888, 35831808, 1, 96, 4032, 96768, 1451520, 13934592, 83607552, 286654464, 429981696
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,12} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			1;
1, 12;
1, 24, 144;
1, 36, 432, 1728;
1, 48, 864, 6912, 20736;
1, 60, 1440, 17280, 103680, 248832;
1, 72, 2160, 34560, 311040, 1492992, 2985984;
1, 84, 3024, 60480, 725760, 5225472, 20901888, 35831808;
		

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+12*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    Flatten[Table[CoefficientList[(1+12x)^n,x],{n,0,10}]] (* Harvey P. Dale, Oct 18 2015 *)

Formula

G.f.: 1 / (1 - x(1+12y)).
T(n,k) = 12^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*11^(n-i). Row sums are 13^n = A001022. - Mircea Merca, Apr 28 2012