A013620 Triangle of coefficients in expansion of (2+3x)^n.
1, 2, 3, 4, 12, 9, 8, 36, 54, 27, 16, 96, 216, 216, 81, 32, 240, 720, 1080, 810, 243, 64, 576, 2160, 4320, 4860, 2916, 729, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 256, 3072, 16128, 48384, 90720, 108864, 81648, 34992, 6561, 512
Offset: 0
Examples
Triangle begins: 1; 2,3; 4,12,9; 8,36,54,27; 16,96,216,216,81;
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Gábor Kallós, A generalization of Pascal’s triangle using powers of base numbers, Annales mathématiques Blaise Pascal, 13 no. 1 (2006), p. 1-15.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a013620 n k = a013620_tabl !! n !! k a013620_row n = a013620_tabl !! n a013620_tabl = iterate (\row -> zipWith (+) (map (* 2) (row ++ [0])) (map (* 3) ([0] ++ row))) [1] -- Reinhard Zumkeller, May 26 2013, Apr 02 2011
-
Mathematica
Flatten[Table[Binomial[i, j] 2^(i-j) 3^j, {i, 0, 10}, {j, 0, i}]] (* Vincenzo Librandi, Apr 22 2014 *)
Formula
G.f.: 1 / [1 - x(2+3y)].
Comments