cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A020640 Successive record periods of continued fraction for sqrt(k) (period of continued fraction for sqrt(A013645(n+1))).

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 22, 26, 34, 37, 40, 42, 44, 48, 52, 54, 60, 62, 64, 70, 76, 79, 88, 94, 96, 102, 104, 108, 114, 118, 122, 130, 136, 152, 156, 158, 170, 172, 174, 194, 196, 202, 207, 210, 217, 228, 234, 238, 239, 248, 262, 268, 280, 281
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    per[n_] := ContinuedFraction[Sqrt[n]][[2]] // Length; record = 0; t = Reap[For[n = 1, n < 2*10^4, n++, If[ !IntegerQ[Sqrt[n]], p = per[n]; If[p > record, record = p; Print[{n, p}]; Sow[{n, p}]]]]][[2, 1]]; A020640 = t[[All, 2]] (* Jean-François Alcover, Dec 27 2012 *)
    DeleteDuplicates[Table[If[IntegerQ[Sqrt[n]],Nothing,Length[ContinuedFraction[Sqrt[n]][[2]]]],{n,20000}],GreaterEqual] (* Harvey P. Dale, Dec 28 2023 *)

Formula

a(n) = A003285(A013645(n+1)). - Pontus von Brömssen, Nov 24 2024

A130272 Primes p for which the period of the continued fraction of sqrt(p) increases.

Original entry on oeis.org

2, 3, 7, 13, 19, 31, 43, 61, 103, 109, 139, 151, 181, 211, 331, 421, 541, 571, 631, 751, 919, 1291, 1381, 1549, 1579, 1621, 1759, 1831, 2011, 2311, 2671, 3019, 3469, 3691, 3931, 4909, 4951, 4999, 5119, 6211, 6451, 6679, 8269, 8719, 8779, 8941, 9739, 9949
Offset: 1

Views

Author

T. D. Noe, May 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    mx=0; n=0; t=Table[n++; While[p=Prime[n]; len=Length[Last[ContinuedFraction[Sqrt[p]]]]; len<=mx, n++ ]; mx=len; p, {50}]

Formula

Where records occur in A054269.

A374232 Indices of records in A028832.

Original entry on oeis.org

1, 2, 3, 14, 19, 46, 94, 151, 211, 379, 526, 694, 919, 1324, 1759, 2011, 2326, 3691, 4174, 5086, 6451, 7606, 8254, 10294, 10651, 13126, 17599, 18979, 19231, 21319, 30319, 31606, 32971, 34654, 42379, 46006, 48799, 58774, 76651, 78094, 82471, 85999, 90931, 101599
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := If[IntegerQ@ Sqrt[n], 0, Length @ DeleteDuplicates[ContinuedFraction[Sqrt[n]][[2]]]];
    seq[kmax_] := Module[{smax = -1, s1, sq = {}}, Do[If[(s1 = s[k]) > smax, smax = s1; AppendTo[sq, k]], {k, 1, kmax}]; sq]; seq[10^5]

A233423 Values of n at which the period of the continued fraction for sqrt(n) is nondecreasing.

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 19, 21, 22, 31, 43, 46, 76, 94, 124, 133, 139, 151, 166, 211, 214, 244, 301, 309, 331, 421, 526, 571, 604, 631, 751, 886, 919, 991, 1279, 1291, 1324, 1366, 1516, 1621, 1726, 2011, 2311, 2566, 2671, 3004, 3019, 3259, 3334, 3691, 3931, 4174
Offset: 1

Views

Author

David Spies, Dec 09 2013

Keywords

Crossrefs

Superset of A013645.

Programs

  • Mathematica
    t = {1}; mx = 0; n = 1; While[Length[t] < 60, n++; If[! IntegerQ[Sqrt[n]], len = Length[ContinuedFraction[Sqrt[n]][[2]]]; If[len >= mx, AppendTo[t, n]; mx = len]]]; t (* T. D. Noe, Dec 10 2013 *)

Extensions

Extended by T. D. Noe, Dec 10 2013
Showing 1-4 of 4 results.