A013654 Positive nonsquare integers k such that each term of the regular continued fraction of sqrt(k) divides k.
2, 8, 12, 24, 30, 48, 56, 80, 90, 120, 132, 168, 182, 224, 240, 288, 306, 360, 380, 440, 462, 528, 552, 624, 650, 728, 756, 840, 870, 960, 992, 1088, 1122, 1224, 1260, 1368, 1406, 1520, 1560, 1680, 1722, 1848, 1892, 2024, 2070, 2208, 2256, 2400, 2450, 2600
Offset: 1
References
- H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, Table 1.
- Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Maple
A013654:=n->n*(n+1+(1+(-1)^n)/2); seq(A013654(n), n=1..100); # Wesley Ivan Hurt, Nov 19 2013
-
Mathematica
Table[n(n+1+(1+(-1)^n)/2), {n,100}] (* Wesley Ivan Hurt, Nov 19 2013 *) Table[If[OddQ[n],n(n+1),n(n+2)],{n,50}] (* Harvey P. Dale, May 15 2021 *)
Formula
a(2n) = 2*(n+1)*(2n), a(2n+1) = 2*(n+1)*(2n+1). - Frank Ellermann, Feb 22 2002
G.f.: (-2-6*x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = n * (n + 1 + (1+(-1)^n)/2). - Wesley Ivan Hurt, Nov 19 2013
Extensions
More terms from David W. Wilson
Name clarified by Rolf Knobel, Dec 27 2023
Comments