cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013658 Discriminants of imaginary quadratic fields with class number 4 (negated).

Original entry on oeis.org

39, 55, 56, 68, 84, 120, 132, 136, 155, 168, 184, 195, 203, 219, 228, 259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408, 435, 483, 520, 532, 555, 568, 595, 627, 667, 708, 715, 723, 760, 763, 772, 795, 955, 1003, 1012, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[1250], NumberFieldClassNumber[Sqrt[-#]] == 4 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 4} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..2000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==4] # G. C. Greubel, Mar 01 2019

Extensions

a(50)-a(54) added by Andrew Howroyd, Jul 20 2018