cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013666 Decimal expansion of zeta(8).

Original entry on oeis.org

1, 0, 0, 4, 0, 7, 7, 3, 5, 6, 1, 9, 7, 9, 4, 4, 3, 3, 9, 3, 7, 8, 6, 8, 5, 2, 3, 8, 5, 0, 8, 6, 5, 2, 4, 6, 5, 2, 5, 8, 9, 6, 0, 7, 9, 0, 6, 4, 9, 8, 5, 0, 0, 2, 0, 3, 2, 9, 1, 1, 0, 2, 0, 2, 6, 5, 2, 5, 8, 2, 9, 5, 2, 5, 7, 4, 7, 4, 8, 8, 1, 4, 3, 9, 5, 2, 8, 7, 2, 3, 0, 3, 7, 2, 3, 7, 1, 9, 7
Offset: 1

Views

Author

Keywords

Comments

This sequence is also the decimal expansion of Pi^8/9450. - Mohammad K. Azarian, Mar 03 2008

Examples

			1.00407735619794433937868523850865246525896079064985002032911020265...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

  • Maple
    Digits := 100 : evalf(Pi^8/9450) ; # R. J. Mathar, Jan 07 2021
  • Mathematica
    RealDigits[Zeta[8], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)

Formula

zeta(8) = 2/3*2^8/(2^8 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^9 ), where p(n) = 5*n^8 + 60*n^6 + 126*n^4 + 60*n^2 + 5 is a row polynomial of A091043. See A013662, A013664, A013668 and A013670. - Peter Bala, Dec 05 2013
zeta(8) = Sum_{n >= 1} (A010052(n)/n^4). - Mikael Aaltonen, Feb 20 2015
zeta(8) = Product_{k>=1} 1/(1 - 1/prime(k)^8). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020 (Start):
zeta(8) = (1/7!)*Integral_{0..infinity} x^7/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=8, p. 807. The value of the integral is 8*Pi^8/15 = 5060.54987... .
zeta(8) = (2^7/(127*7!))*Integral_{0..infinity} x^7/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=8, p. 807. The prefactor is 8/40005. The value of the integral is (127/240)*Pi^8 = 5021.014329... .(End)
Equals A092736/9450. - R. J. Mathar, Jan 07 2021
From Peter Bala, Apr 27 2025: (Start)
zeta(8) = 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) - 1)^2 dx = 2^7/(2^7 - 1) * 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) + 1)^2 dx.
zeta(8) = 1/9! * Integral_{x >= 0} x^9 * exp(x)*(exp(x) + 1) /(exp(x) - 1)^3 dx = 1/(3*15*63*127) * Integral_{x >= 0} x^9 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)