A013666 Decimal expansion of zeta(8).
1, 0, 0, 4, 0, 7, 7, 3, 5, 6, 1, 9, 7, 9, 4, 4, 3, 3, 9, 3, 7, 8, 6, 8, 5, 2, 3, 8, 5, 0, 8, 6, 5, 2, 4, 6, 5, 2, 5, 8, 9, 6, 0, 7, 9, 0, 6, 4, 9, 8, 5, 0, 0, 2, 0, 3, 2, 9, 1, 1, 0, 2, 0, 2, 6, 5, 2, 5, 8, 2, 9, 5, 2, 5, 7, 4, 7, 4, 8, 8, 1, 4, 3, 9, 5, 2, 8, 7, 2, 3, 0, 3, 7, 2, 3, 7, 1, 9, 7
Offset: 1
Examples
1.00407735619794433937868523850865246525896079064985002032911020265...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Maple
Digits := 100 : evalf(Pi^8/9450) ; # R. J. Mathar, Jan 07 2021
-
Mathematica
RealDigits[Zeta[8], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)
Formula
zeta(8) = 2/3*2^8/(2^8 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^9 ), where p(n) = 5*n^8 + 60*n^6 + 126*n^4 + 60*n^2 + 5 is a row polynomial of A091043. See A013662, A013664, A013668 and A013670. - Peter Bala, Dec 05 2013
zeta(8) = Sum_{n >= 1} (A010052(n)/n^4). - Mikael Aaltonen, Feb 20 2015
zeta(8) = Product_{k>=1} 1/(1 - 1/prime(k)^8). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020 (Start):
zeta(8) = (1/7!)*Integral_{0..infinity} x^7/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=8, p. 807. The value of the integral is 8*Pi^8/15 = 5060.54987... .
zeta(8) = (2^7/(127*7!))*Integral_{0..infinity} x^7/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=8, p. 807. The prefactor is 8/40005. The value of the integral is (127/240)*Pi^8 = 5021.014329... .(End)
Equals A092736/9450. - R. J. Mathar, Jan 07 2021
From Peter Bala, Apr 27 2025: (Start)
zeta(8) = 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) - 1)^2 dx = 2^7/(2^7 - 1) * 1/8! * Integral_{x >= 0} x^8 * exp(x)/(exp(x) + 1)^2 dx.
zeta(8) = 1/9! * Integral_{x >= 0} x^9 * exp(x)*(exp(x) + 1) /(exp(x) - 1)^3 dx = 1/(3*15*63*127) * Integral_{x >= 0} x^9 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)
Comments