A013668 Decimal expansion of zeta(10).
1, 0, 0, 0, 9, 9, 4, 5, 7, 5, 1, 2, 7, 8, 1, 8, 0, 8, 5, 3, 3, 7, 1, 4, 5, 9, 5, 8, 9, 0, 0, 3, 1, 9, 0, 1, 7, 0, 0, 6, 0, 1, 9, 5, 3, 1, 5, 6, 4, 4, 7, 7, 5, 1, 7, 2, 5, 7, 7, 8, 8, 9, 9, 4, 6, 3, 6, 2, 9, 1, 4, 6, 5, 1, 5, 1, 9, 1, 2, 9, 5, 4, 3, 9, 7, 0, 4, 1, 9, 6, 8, 6, 1, 0, 3, 8, 5, 6, 5
Offset: 1
Examples
1.0009945751278180853371459589003190170060195315644775172577889946362914...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[Zeta[10], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)
-
PARI
zeta(10) \\ Michel Marcus, Feb 20 2015
Formula
Equals Pi^10/93555.
zeta(10) = 4/3*2^10/(2^10 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^11 ), where p(n) = 3*n^10 + 55*n^8 + 198*n^6 + 198*n^4 + 55*n^2 + 3 is a row polynomial of A091043. - Peter Bala, Dec 05 2013
zeta(10) = Sum_{n >= 1} (A010052(n)/n^5) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^5 ). - Mikael Aaltonen, Feb 20 2015
zeta(10) = Product_{k>=1} 1/(1 - 1/prime(k)^10). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020: (Start)
zeta(10) = (1/9!)*Integral_{0..infinity} x^9/(exp(x) - 1). See Abramowitz-Stegun, 23.2.7., for s=10, p. 807. The value of the integral is (128/33)*Pi^10 = (3.6324091...)*10^5.
zeta(10) = (4/1448685)*Integral_{0..infinity} x^9/(exp(x) + 1). See Abramowitz-Stegun, 23.2.8., for s=10, p. 807. The value of the integral is (511/132)*Pi^10 = (3.625314565...)*10^5. (End)