cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013672 Decimal expansion of zeta(14).

Original entry on oeis.org

1, 0, 0, 0, 0, 6, 1, 2, 4, 8, 1, 3, 5, 0, 5, 8, 7, 0, 4, 8, 2, 9, 2, 5, 8, 5, 4, 5, 1, 0, 5, 1, 3, 5, 3, 3, 3, 7, 4, 7, 4, 8, 1, 6, 9, 6, 1, 6, 9, 1, 5, 4, 5, 4, 9, 4, 8, 2, 7, 5, 5, 2, 0, 2, 2, 5, 2, 8, 6, 2, 9, 4, 1, 0, 2, 3, 1, 7, 7, 4, 2, 0, 8, 7, 6, 6, 5, 9, 7, 8, 2, 9, 7, 1, 9, 9, 8, 4, 6
Offset: 1

Views

Author

Keywords

Examples

			1.0000612481350587048292585451051353337474816961691545494827552022528629...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Programs

Formula

zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - Mikael Aaltonen, Feb 20 2015
zeta(14) = 2/18243225*Pi^14 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - Vaclav Kotesovec, May 02 2020